神戸大学研究基盤センター

若手フロンティア研究会 2023 概要集

開催日:2023 年 12 月 26 日(火) 場所:神戸大学 百年記念館

入館・退館について

来場者の方は全員こちらのQRコードよりWEBにて入館・退館記録をしてください。お手数 をお掛けいたしますが、ご協力をお願いいたします。

紙での入館・退館カードも準備しております。ご利用の方は受付までお声掛けください。

学内の研究設備を予約利用できることをご存知ですか?

◇ご利用の流れ

研究設備共同利用予約システムが 運用中です!

点在する学内の研究設備を共同利用 するシステムです。

あなたの研究に必要な機器がみつかるかもしれません!!

予約 利用料金 設備の 設備の 利用者 設備の 利用 の請求 2 登録相談 登録 登録 利用 相談 承認 と受取 利用者が 利用者が料金を 設備管理者 システム管理者 設備管理者と システム管理者 システム 支払い 利用者が が システム管理者 が と に予約し システムに 設備を利用 設備管理者が が相談 利用者を登録 設備登録 利用者が相談 設備管理者 受取 が承認

◇利用してみませんか?

◇お手持ちの機器を共同利用登録してみませんか?

- ・学内の設備管理者は、システムに自身が管理する設備を登録し、自身が利用単価を決め、利用料金の 90%を受領することができます。(10%は予約システムの運営管理費です。)
- ・システムへの設備の登録、研究設備サポート推進室が随時行います。
- ・料金計算、利用者への請求、設備管理者への支払いは、研究設備サポート推進室と研究推進課が利用 者と設備管理者の所属部局を通して行います。
- ・詳細は、HPのサブメニュー各種マニュアル>研究設備共同利用予約システム関係をご参照下さい。

研究設備サポート推進室 078-803-5982

csrea-morf@research.kobe-u.ac.jp

問い合わせ:極低温部門 <078-803-5996> csrea-teion@research.kobe-u.ac.jp

7∭`

発表者プログラム

ポスター 番号	発表者氏名 Presenter name	発表者所属 Affiliation	発表タイトル Title of summary	ページ 番号
A01	見尾 健太郎	生物学専攻 Biology	FAD依存性酵素LSD2によるSASP因子の発現制御	9р
A02	石黒 更	人間環境学専攻 Human Environmental Science	Exploring genomic diversity in the genus Hydrangea in Kobe	9р
A03	下舞 陽菜	人間環境学専攻 Human Environmental Science	Adaptation strategy of wild plant to urban environments	10p
A04	建井 政範	資源生命科学専攻 Bioresource Science	イチゴアレルゲンFra a 1.01の長距離移行性の解析	10p
A05	新宅 佳那子	資源生命科学専攻 Bioresource Science	カーネーションの開花関連遺伝子FTの機能解析	11p
A06	飆谷 智也	生物学専攻 Biology	DNA損傷応答因子FANCD2と脂質代謝の機能連関	11p
A07	白木 沙彩	資源生命科学専攻 Bioresource Science	二重変異体を用いたDDM1およびHDA6の雑種強勢における役割の解明	12p
A08	向 子愷	生命機能科学専攻 Agrobioscience	コムギいもち病菌侵入過程における糖代謝と脂質代謝のクロストーク	12p
A09	北村 幸昭	生命機能科学専攻 Agrobioscience	GVIA iPLA2は過酸化脂質を分解しフェロトーシスを抑制する	13p
A10	上田 祐聖	生命機能科学専攻 Agrobioscience	黒大豆種皮抽出物による糖尿病併発性認知症の予防効果	13p
A11	YANG XIAOWEN	生命機能科学専攻 Agrobioscience	Effect of polyphosphate and phosphoric acid on appressorium formation in Pyricularia oryzae	14p
A12	堀 智彦	科学技術イノベーション専攻 Technology and innovation	T7ファージ由来の転写系を利用した酵母遺伝子スイッチの開発	14p
A13	道上 佑希	化学専攻 Chemistry	酸化、還元条件下におけるタウ液滴の凝集機構の解明	15p
A14	藤川 大誠	資源生命科学専攻 Bioresource Science	未分化性腺の精巣化へのビタミンD受容体の関与	15p
A15	桐月 優輔	資源生命科学専攻 Bioresource Science	B6Js-XYPOSマウス性腺におけるSox9発現の消退	16p
A16	北村 千晶	生命機能科学専攻 Agrobioscience	筋内脂肪形成に関わる特異的な遺伝子の発現調節に関する研究	16p
A17	由田 健人	資源生命科学専攻 Bioresource Science	ラット大腸の粘膜内および粘膜下組織における 神経系の生後変化に関する組織学的研究	17p
B01	波部 俊亮	応用化学専攻 Chemistry Science and Engineering	凝集性低分子化合物によるDNA分解酵素の機能阻害	17p
B02	梅村 陸	応用化学専攻 Chemistry Science and Engineering	自己組織化能を持った多環芳香族化合物によるアポトーシスの誘導	18p
B03	三輪 陽彦	応用化学専攻 Chemistry Science and Engineering	D-ペプチドによるアミロイドβの線維化阻害	18p
B04	神吉 悠介	応用化学専攻 Chemistry Science and Engineering	銅フリークリック反応による異種材料接着	19p
B05	星野 風河	応用化学専攻 Chemistry Science and Engineering	表面分解により再利用可能なアミノ基提示表面の作製	19p
B06	天羽 輝	応用化学専攻 Chemistry Science and Engineering	高分子コーティングによる材料表面へのアジド基の提示	20p
B07	竹内 愛斗	化学専攻 Chemistry	自己再生型ペロブスカイト光触媒の顕微分光観測	20p

B08	田中 直純	化学専攻 Chemistry	スズ系有機無機ペロブスカイトの水中発光挙動の解析	21p
B09	吉田 沙理那	応用化学専攻 Chemistry Science and Engineering	金ナノ粒子同士の連結を利用した水溶液中での 導電性金薄膜の形成	21p
B10	木村 俊久	応用化学専攻 Chemistry Science and Engineering	ヒスチジン含有ペプチド脂質を利用したアミド結合の分解	22p
B11	河崎 佳保	応用化学専攻 Chemistry Science and Engineering	p型CNTのドーブ状態安定性におけるHSAB則	22p
B12	西中 茉佑子	応用化学専攻 Chemistry Science and Engineering	有機超塩基イオン液体によるカーボンナノチューブの電気化学ドーピングと熱電特性制御	23p
B13	片山 耕太郎	海事科学専攻 Maritime Sciences	毛髪トリートメント効果を有する有機酸とアミンの新規化合物合成	23p
B14	山譯 千慧	化学専攻 Chemistry	金属結合性クロスa型ペプチドファイバーの設計	24p
B15	足立 将人	電気電子工学専攻 Electrical and Electronic Engineering	Mie共鳴により高輝度な散乱を示すシリコンナノ粒子をコアとする生体用蛍光センシングナノ プローブの開発	24p
B16	Oanh VU	電気電子工学専攻 Electrical and Electronic Engineering	Covalent Immobilization of Silicon nanospheres on Silica Substrate	25p
B17	中西 裕貴	応用化学専攻 Chemistry Science and Engineering	含窒素芳香環における分子内C-Hアリール化反応	25p
B18	迫 綾香	化学専攻 Chemistry	ジペプチドGly-Phe集合体の構造解析	26p
B19	笠井 大幹	電気電子工学専攻 Electrical and Electronic Engineering	Mie共鳴シリコンナノ粒子のパーセル効果による電気・磁気双極子発光制御	26p
B20	大沢 慶祐	電気電子工学専攻 Electrical and Electronic Engineering	高屈折率誘電体ナノ粒子のMie共鳴によるFörster共鳴エネルギー移動の選択的な蛍光 制御	27p
B21	志摩 大輔	電気電子工学専攻 Electrical and Electronic Engineering	ヘリシティ分解ラマン分光を用いた誘電体ナノアンテナによる近接場のヘリシティ測定	27p
B22	三嶋 里奈	化学専攻 Chemistry	六方晶窒化ホウ素の層間酸塩基反応を用いた剥離膜の作製と発光特性	28p
B23	白木 秀岳	化学専攻 Chemistry	グラファイト層間化合物を利用したナノシートの作製	28p
B24	濱田 直輝	応用化学専攻 Chemistry Science and Engineering	真空凍結乾燥法によるセシウムイオンの 無機アモルファス材料への固定化	29p
B25	リュウ ケイキン	応用化学専攻 Chemistry Science and Engineering	真空凍結乾燥法によるモリブデン酸イオンの 無機アモルファス材料への固定化に関する研究	29p
B26	森朝 啓介	電気電子工学専攻 Electrical and Electronic Engineering	シリコンメタサーフェスの吸収増強を利用した狭帯域近赤外光検出-Symmetry protected quasi-BICによる偏光検出-	30p
B27	鬼塚 遼平	電気電子工学専攻 Electrical and Electronic Engineering	有機/無機ヘテロ界面におけるバンド内光学遷移の発現と太陽電池への応用	30p
B28	島 悠之輔	応用化学専攻 Chemistry Science and Engineering	カルバゾマイシンFの初の全合成	31p
B29	宋 佳潞	電気電子工学専攻 Electrical and Electronic Engineering	Control of Reflection Colors of Silicon Nanoparticle Monolayer	31p
B30	西本 颯	応用化学専攻 Chemistry Science and Engineering	イミダゾリルマグネシウムの立体制御型ハロゲンダンス	32p
B31	野田 直希	応用化学専攻 Chemistry Science and Engineering	NiO(cod)(dq)を触媒前駆体に用いるチオフェン類のカップリング反応	32p
B32	高橋 真斗	物理学専攻 Physics	MEG II実験DLC-RPCの加速劣化試験	33p

B33	小林 唯乃	惑星学専攻 Planetology	地質温度計を用いた貫入火成岩による被熱異常の検討	33p
B34	磯谷 舟佑	人間環境学専攻 Human Environmental Science	アミンを包接したシリカクラスレート中のラジカル挙動	34p
C01	粟野 裕斗	化学専攻 Chemistry	誘電分光法・赤外分光法を用いた深共晶溶媒の不均質性	34p
C02	高本 和也	化学専攻 Chemistry	有機溶媒中の9-アリールカルバゾールが示す分子内電荷移動状態への直接遷移に対する 光化学的研究	35p
C03	内田 朋実	生命機能科学専攻 Agrobioscience	抗腫瘍性メイタンシンの簡素化アナログ合成	35p
C04	大西 昂	物理学専攻 Physics	幾何学的フラストレーション系NdMgInの新奇物性	36p
C05	田中 裕斗	物理学専攻 Physics	Ce系化合物における反強磁性構造由来の異常ホール効果の検証	36p
C06	植原 美遊	生命機能科学専攻 Agrobioscience	前立腺癌細胞株のプロテアソーム阻害剤に対する薬剤耐性におけるPolo like kinaseの 役割	37p
C07	野口 拓海	化学専攻 Chemistry	酸化還元活性なアゾ配位子を有するNi(III)錯体の原子価不安定性	37p
C08	前谷 風弥	物理学専攻 Physics	近藤半金属CeRu2Al10の高圧下ホール効果測定	38p
C09	小野 凌汰	資源生命科学専攻 Bioresource Science	ナデシコ属植物の春化応答におけるFLCの役割	38p
C10	峰地 楓子	資源生命科学専攻 Bioresource Science	CRISPR/Cas9によるレタスアラントイナーゼ欠損変異体の作出と生理機能の解析	39p
C11	薦田 拓也	物理学専攻 Physics	超伝導物質を熱スイッチに用いた断熱消磁冷凍機の試作Ⅲ	39p
C12	石野 圭一郎	化学専攻 Chemistry	2次元鉄(II)配位高分子のゲスト脱離に伴う構造と磁性の変化	40p
C13	水村 景太	化学専攻 Chemistry	クロロフィルとの電子励起状態に関する考察	40p
C14	丸山 陽大	人間環境学専攻 Human Environmental Science	低波数領域の振動分光法と量子化学計算による ポリトリメチレンテレフタレートのメチレン基の数に起因する 結晶構造への影響について	41p
C15	中明 育	化学専攻 Chemistry	超伝導フラクタルナノ複合体の超伝導特性に及ぼす界面構造とMgB2含有量の効果	41p
C16	広田 舞	化学専攻 Chemistry	スピンクロスオーバー錯体(Ⅲ)錯体のハロゲン置換効果	42p
C17	中西 青空	物理学専攻 Physics	圧力誘起超伝導体CeSb2のNQRによる研究	42p
C18	石井 俊介	物理学専攻 Physics	3Dプリンターで作る光学素子に向けた反射膜の研究	43p
C19	鍋田 百花	物理学専攻 Physics	黒リンの圧力下THzサイクロトロン共鳴測定	43p
C20	濱田 優翔	物理学専攻 Physics	量子磁性体の圧力下THz ESRによる研究	44p
C21	畑山 昌寛	人間環境学専攻 Human Environmental Science	低波数領域の振動分光法によるP(LLA-co-CL)共重合体の 高次構造の検討と海洋分解性の評価	44p
C22	井上 亮汰	化学専攻 Chemistry	シアノ系アニオンを有する有機金属柔粘性 イオン結晶の構造と熱的性質	45p
C23	伊郷 祐馬	物理学専攻 Physics	テラヘルツ帯ESR測定用ディアボロ型アンテナの特性評価と作製	45p

C24	阿部 修也	物理学専攻 Physics	特異な磁気構造をもつUNi4Bの微視的研究	46p
C25	藤井 真子	生命機能科学専攻 Agrobioscience	Model membrane arrays prepared by self-spreading of lipid bilayers in preformed polymeric lipid bilayer channels	46p
C26	肥塚 雅人	生命機能科学専攻 Agrobioscience	支持脂質二分子膜にGPCRを配向性を制御して組み込む	47p
C27	林 誉理花	人間環境学専攻 Human Environmental Science	テラヘルツ時間領域分光法を用いた汎用ポリマーの劣化評価	47p
C28	小島 大輝	物理学専攻 Physics	溶液試料における熱的検出ESR分光法の開発	48p
C29	神矢 良樹	資源生命科学専攻 Bioresource Science	シロイヌナズナの耐塩性における雑種強勢メカニズムの解明	48p
C30	笠崎 泰世	化学専攻 Chemistry	電子供与基を有するアゾ配位子からなるNi錯体の性質	49p
C31	吉村 優	生命機能科学専攻 Agrobioscience	Nanofluidic supported model cell membrane for single molecular analysis of membrane bound proteins	49p
C32	赤木 草太	物理学専攻 Physics	新しい直方晶化合物CeIrIn2の低温物性	50p
D01	望月 政一郎	海事科学専攻 Maritime Sciences	CR-39(TechnoTrak)の陽子及び重陽子に対する応答特性2	50p
D02	岡野 滉也	電気電子工学専攻 Electrical and Electronic Engineering	二次電子放出を利用した高速イオンからのエネルギー回収におけるカスブ磁場の導入Ⅲ	51p
D03	藤原 理帆	海事科学専攻 Maritime Sciences	ピンホールコリメータによる2箇所の高エネルギーガンマ線計測	51p
D04	成藤 智哉	海事科学専攻 Maritime Sciences	ガンマ線の2箇所同時生成および1次元イメージング実験	52p
D05	上月 智史	海事科学専攻 Maritime Sciences	2箇所で生成した高エネルギーガンマ線の1次元イメージング実験	52p

※施錠しませんので貴重品は置かず、各自で管理してください。 ・名札は<u>表彰式の後</u>で回収します。持ち帰らないでください。

- アンケートは Web(若手フロンティアホームページ)から入力できます。皆さまの ご協力をお願いいたします。
- ・当日の緊急連絡は 078-803-5398(研究推進課研究推進グループ) までお願いします。

FAD 依存性酵素 LSD2 による SASP 因子の発現制御

見尾健太郎¹,大角泰一¹,長野太輝²,岩崎哲史^{1,2},鎌田真司^{1,2}

1理学研究科 生物学専攻、2バイオシグナル総合研究センター

細胞老化は不可逆的な細胞周期の停止と定義され、DNA 損傷やテロメアの 短縮など様々なストレスによって引き起こされる細胞応答である。老化細胞 が炎症性サイトカインや細胞外基質分解酵素などのタンパク質を分泌する 現象は SASP (senescence-associated secretory phenotype)と呼ばれ、慢性炎症や 発がんの促進など様々な加齢性疾患の発症に関わっている。そのため SASP 因子の発現メカニズムについて明らかにすることはこれらの疾患を予防し、 人々の健康寿命を延伸する上で重要である。

ヒト培養細胞にFAD依存的に働く酵素LSD2を過剰発現したところ老化 誘導時、SASP因子であるIL(Interleukin)やMMP(matrix metalloproteinase) の発現量が増加した。一方でLSD2をノックダウンしたところ老化誘導時、 これらの因子の発現上昇が抑えられた。また老化誘導後、培地にビタミンB2を 添加して培養を行なった細胞においては、LSD2過剰発現時と同様にSASP因子 の発現量が増加した。これらの結果から老化細胞によって取り込まれたビタミンB2 は、LSD2を介してSASP因子の発現に関与していることが示唆された。

A02 Exploring genomic diversity in the genus *Hydrangea* in Kobe

Sara Ishiguro¹, Shota Taniguchi¹, Nicola Schmidt², Matthias Jost³, Stefan Wanke², Tony Heitkam², Nobuko Ohmido¹

 Graduate School of Human Development and Environment, 2. Faculty of Biology, TU Dresden, 3. Departamento de Botánica, Instituto de Biología, UNAM

Hydrangea is a popular garden plant due to its ornamental value. However, hybridization has been performed primarily based on its morphological traits, resulting in unknown genetic diversity, species origin, and phylogeny. Analysis of repetitive elements in *Hydrangea* species is a key for understanding its genetic diversity and achievements of genetic resources for elaborate breeding. In this study, whole genome sequencing (WGS) and comparative graph-based-clustering analyses were performed using Repeat Explorer pipeline to characterize and compare repetitive elements within six *Hydrangea* species with different origins and chromosome numbers. Comparative clustering analysis divided into four groups based on the composition and abundance of identified repeats in their genomes; Japanese diploid (Gak, Tam, and Ezo), Japanese polyploid (Nor), Chinese (Str), and American (Ann) species. Tekay elements in *H. paniculata* (Nor) genome are independently developed from Japanese diploid species whereas Ale elements are conserved between *H. paniculata* (Nor) and Japanese diploid species. In addition, satellite DNAs (satDNAs) landscape of *H. paniculata* (Nor) genome suggests that *H. paniculata* (Nor) has two genetic genealogies from Japanese diploid and Chinese species.

Adaptation strategy of wild plant to urban environments

Hina Shimomai¹, Taichi Nakata¹, Koki R. Katsuhara², Seiji Kato¹, Atushi Ushimaru¹, Nobuko Ohmido^{1*}

^{1.} Graduate School of Human Development and Environment, Kobe University,

Tsurukabuto 3-11, Nada, 657-8501, Kobe, Japan, ^{2.} Okayama University

Urbanization largely changes biodiversity and natural environments. Few studies have investigated plant adaptation to urban environments based on both ecological and molecular cytological approaches. We focus on two annual plants, *Commelina communis* (Cc) and its related species, *C.c.f.ciliata* (Ccfc) which grow widely in Asia and highly diverse both in morphological traits and chromosome numbers (Ccfc; 2n=46 and Cc; 2n=88). We demonstrate how plants adapt to urban environments by investigating the distribution in urban-rural gradients, the comparison of stomata and genome size, and chromosome karyotyping. As a result, Cc was distributed widely from rural to urban areas, while Ccfc were found only in rural areas. The stomata length of Cc was significantly longer, and Cc had double genome size, compared to that of Ccfc. Ccfc chromosomes were detected on a part of Cc chromosomes by GISH. From these results, the large stomata size of Cc seems due to polyploidy, and polyploidy might give Cc to have a high potential to adapt to urban environments compared to Ccfc. This is the first investigation to clarify the distribution difference relating to urbanization, the difference in stomata and genome size, and to conduct chromosome karyotyping in two *Commelina* species. In this presentation, we discuss the mechanism of plant adaptation in urban environments focusing on the relationship between the effects of human activity and genetic traits which leads to the ecological difference in nature plants.

A04 イチゴアレルゲン Fra a 1.01 の長距離移行性の解析

建井政範¹、内田遥和¹、武部加奈子¹、小山竜平¹、石橋美咲^{1,2}、宇野雄一¹

1農学研究科 資源生命科学専攻、2京都大 院 農

イチゴにより口腔アレルギー症候群(OAS)を発症する患者の食事制限は、食生活の質の低下や消費 低迷につながる.低アレルゲン性イチゴの開発が期待される一方で、アレルゲンが有用農業形質に関わ ることを想定し、植物体内の生理的役割を理解する必要がある.イチゴの主要アレルゲンは Fraa1 であ り、発現や構造の解析により生物・非生物ストレスから植物体を保護すると推定されてきたが、機能解 明には至っていない.我々は Fraa1.01の転写量と翻訳量に相関性がないことに着目し、その理由を他 植物種のオルソログのように長距離移行性を持つためと仮定した.そこで本研究では形質転換体を用い て Fraa1.01の組織特異性を解析し、その結果から移行性を考察した.シロイヌナズナに Fraa 1.01pro::GUSを導入しGUS 染色を行った結果、葉、茎、および根で高い発現が観察された.抗 Fraa1 ポリクローナル抗体を用いたイチゴ果実の免疫蛍光染色では、維管束と痩果に Fraa1.01 タンパク質の シグナルが観察された.同抗体により浸出液由来タンパク質のイムノブロットを行った結果、果実の各 成熟ステージにおいて果柄浸出液内に Fraa1.01が存在することを確認した.この結果は、ゲノム編集 により作出した Fraa1.01欠損体の果柄浸出液内に Fraa1.01が検出できなかったことで裏付けられた. シロイヌナズナの接ぎ木をイムノブロットで分析した結果、穂木が Fraa1.01 過剰発現体、台木が野生 型の組み合わせにおいて、野生型の根に Fraa1.01の蓄積が認められた.以上により、Fraa1はイチゴ の維管束を介して葉から果実や根に長距離移行する可能性が示された.

カーネーションの開花関連遺伝子 FTの機能解析

新宅佳那子¹、岡本花弥¹、八木雅史²、小西晴香¹、東浦優³、小山竜平¹、宇野雄一¹ ¹農学研究科 資源生命科学専攻、²農研機構・野菜花き研究部門、³兵庫県農林水産技術総合セ

カーネーション (Dianthus caryophyllus L., 2n=30) はナデシコ科ナデシコ属の多年草であり、花卉では初 めてゲノム解読が行われた植物である(Yagi et al., 2014)。カーネーションの切り花生産においては、収穫回数 の増加により収量増が見込めることから、早生性が有用形質となる。そこで本研究ではカーネーションの開花 調節機構の解明を目的として、関連性が高いと考えられる FT オルソログを解析した。カーネーション ゲノムには 6 つの FT 候補遺伝子が存在した。その中で、Dca19666.1 はシロイヌナズナの FT とタンパ ク質レベルの類似性が最も高く、開花促進能に関与する 7 個すべてのアミノ酸が保存されていた。そこ でこの遺伝子を DcFTI と呼び、以降の解析に用いた。DcFTI の転写は、栄養成長から生殖成長へと移行 するにつれて増加した。DcFTI は、齢の異なる葉において発現に差があり、若い葉でより多く蓄積して いた。スプライシングバリアントが存在したが、開花制御との明確な関係は明らかにできなかった。早 晩生の異なる品種において DcFTI の発現量を調査したところ、早咲き品種は遅咲き品種に比べて上昇 時期が早いことが明らかになった。また、日没後 4 時間の End-of-Day cooling 処理により開花促進処理 を行うと、DcFTI の上昇時期が前進した。さらに、DcFTI を過剰発現させたシロイヌナズナ(DcFTI-ox)は、 Vector Control に比べて少ない抽だい日数やロゼット葉数を示した。また、DcFTI がカーネーションの開花調節機 構において重要な役割を持つことが示唆された。

A06

DNA 損傷応答因子 FANCD2 と脂質代謝の機能連関

・ 4月10日、 一般学校、「「「「「「「」」」」。
・ 4月10日、 一般学校、「「「「」」」
・ 一般学校、「「「」」」
・ 一般学校、「「」」
・ 一般学校、「」
・ 一般学校、「、」
・ 一般学校、「」
・ 一般学校、「、」
・ 一般学校、「、
・ 一般学校、
・ 一般学校、
・ 一般学校、

稀な遺伝疾患であるファンコニ貧血(Fanconi anemia, FA)は、骨髄機能不全を主な症状とし、白血病や頭頚部がんの好発の他、先天的な骨格異常など多様な臨床症状を示す。現在までに 22 種類の責任遺伝子が同定され、それらの遺伝子産物(FA タンパク質)は DNA 鎖間架橋などの DNA 損傷に対する細胞応答および修復に機能する。しかし FA 患者の半数以上では脂質代謝の異常など、DNA 損傷 応答の欠損では発症機序の説明が困難な病態が報告されている。

我々は FA タンパク質に未知の機能があるのではないかと考え、FA タンパク質の一つである FANCD2 の相互作用因子を質量分析により探索した。その結果、脂質代謝関連因子が多数同定され、 FANCD2 が脂質代謝に関連する可能性が示唆された。そこで、脂質代謝において重要な役割を担う細 胞小器官である脂肪滴に着目し、脂肪滴の形成を人為的に誘導した際の FANCD2 の細胞内局在を解 析した結果、FANCD2 の一部が核内脂肪滴の周辺に観察されることを見出した。また、DNA 損傷応答 において FANCD2 とヘテロ二量体を形成する FANCI についても、FANCD2 と同様に核内脂肪滴周囲 に観察されたが、FANCD2 と FANCI が共局在する核内脂肪滴は観察されなかった。加えて、FANCD2 の DNA 損傷応答に必須の翻訳後修飾であるモノユビキチン化部位に変異を導入した FANCD2 も、野 生型 FANCD2 同様に核内脂肪滴周囲に観察されたことから、この現象は既知の FANCD2 の DNA 損 傷応答とは異なるメカニズムによっていることが示唆された。

二重変異体を用いた DDM1 および HDA6 の雑種強勢に

おける役割の解明

白木沙彩1、安田剛志2、藤本龍2

1農学研究科 博士前期課程 資源生命科学専攻、2神戸大院・農

「雑種強勢」とは、ある特定の組み合わせの両親を交雑した雑種第一代(F₁)が両親系統よりも優れた性質を示す現象である(図)。シロイヌナズナでは、DDM1と HDA6 が変異すると雑種強勢が低減するが、2遺伝子間の物理的距離が近いため組み換えが起こりにくく、二重変異体を用いた調査は行われていなかった。そこで、CRISPR/Cas9を用いて hda6 変異体に ddm1 変異を導入して hda6/ddm1 二重変異体を作出し、二重変異による生育を調査することを目的とした。Col 系統において作出した hda6/ddm1 二重変異体は、それぞれの hda6、ddm1 変異体と比較して、生育に有意差はみられなかった。次に、F₁二重変異体において発現が上昇すると予測される遺伝子を同定し、その中からACS8 に注目した。ACS8 はDDM1と HDA6 の下流にあり発現抑制されていると推測されたことから、ACS8 を過剰発

現させた個体を作出し、生育への影響を調べた。その結果、F₁の過剰発現体は野生型と比較して、生育が有意に低下した。F₁で *ddm1* 変異により雑種強勢が低減する要因として、*ACS8* の過剰発現が関与している可能性が示唆された。

図:シロイヌナズナの C24 系統と Col 系統が示す雑種強勢

(C24 × Col)

*A*08

コムギいもち病菌侵入過程における糖代謝と脂質代謝

のクロストーク

向 子愷、楊 鈞晧、楊 筱雯、中屋敷 均、池田 健一

農学研究科博士後期課程生命機能科学専攻

いもち菌感染過程における糖代謝と脂質代謝は重要な役割を果たしている。糖代謝において、 amyloglucosidase-encoding gene Agll と glycogen phosphorylase-encoding gene Gph1 の欠損はいもち病菌 付着器の形成過程におけるグリコーゲン貯蔵の動員を阻害することが報告された。さらに、野生株と 比べて Δ agl1 と Δ gph1 は付着器の形成過程でトリアシルグリセロールの存在を示すシグナルが早期 に消失した。一方、脂質代謝酵素ファミリー(Carboxyl esterase 遺伝子群あるいは Triacylglycerol lipase 遺伝子群)を網羅的にサイレンシングした結果、脂質代謝が阻害され糖代謝も阻害されたことより、 両者にクロストークの存在が認められた。 Δ agl1 と Δ gph1 において一部の脂質代謝酵素遺伝子の発現 に影響を与えた。Triacylglycerol lipase 遺伝子群のサイレンシング変異株はコムギ葉と根に対する病原 性が著しく低下した。

GVIA iPLA2 は過酸化脂質を分解しフェロトーシスを抑制する

北村 幸昭¹, 篠原 正和², 芦田 均³、宇野 知秀³、金丸 研吾³、林 大輝³ (¹農学研究科 博士前期課程 生命機能科学専攻、²神戸大・医、³神戸大・農)

フェロトーシスは、アラキドン酸等の多価不飽和脂肪酸 (PUFA) を有するリン脂質の過酸化により惹起されるプログラム細胞死であり、近年、癌や神経疾患との関連が注目されている。Group VIA calciumindependent phospholipase A₂ (GVIA iPLA₂) は、リン脂質加水分解酵素であり、過酸化脂質の蓄積を解消 し、フェロトーシスを抑制することが報告されているが、その詳細なメカニズムは不明である。そこで 本研究では、GVIA iPLA₂によるフェロトーシス抑制メカニズムを検証した。

培養細胞において、GVIA iPLA2の過剰発現がフェロトーシスによる細胞死を有意に抑制することを確認した。また、分子動力学シミュレーションにより、GVIA iPLA2の Tyr555のフェノール性OH基が酸化リン脂質に対する活性に寄与することが示唆された。そこで、TyrをPhe に置換した変異体、Y555Fを用いて同様の実験を行ったところ、Y555Fはフェロトーシスによる細胞死を全く抑制しなかった。一方、in vitro において、Y555FはPUFA含有リン脂質に対する活性を野生型の60%以上維持していた。このことから、GVIA iPLA2は、PUFA含有リン脂質分解による過酸化の抑制ではなく、過酸化脂質そのものを分解し、フェロトーシスを抑制することが明らかになった。さらに、GVIA iPLA2の、フェロトーシス刺激による小胞体への集積が見られ、GVIA iPLA2の、小胞体における過酸化脂質分解への寄与及び、過酸化脂質感知機構の存在が示唆された。現在、GVIA iPLA2過剰発現時の細胞内過酸化脂質の測定及び小胞体移行のメカニズム解明を進めている。

A10

黒大豆種皮抽出物による糖尿病併発性認知症の予防効果

上田祐聖1、西嶋俊貴1、山下陽子2、芦田均2

1農学研究科 博士前期課程 生命機能化学専攻、2農学研究科

【背景】糖尿病はアミロイドの蓄積、グリア細胞の活性化ならびにタウタンパク質の異常なリン酸化な どのアルツハイマー病理を進行させることで神経に損傷を与え、認知症発症リスクを高めることが知ら れている。黒大豆種皮抽出物中に含まれるポリフェノール (BE) は抗酸化作用、抗炎症作用、高血糖抑 制効果を有することが明らかとなっている。しかし、認知症に対する BE の効果は不明である。そこで、 本研究は糖尿病併発性の認知症に対して BE が予防効果を示すかどうかについて検証した。

【方法・結果】C57BL/6J マウスに AIN-93M ベースの標準食あるいは 30%ラード添加の高脂肪食に 2%BE を混餌した飼料を作成し、66 週間摂取させた。また、飼育終了前の 14 週間は BE 摂取を中止した群を 設定した。飼育 4 週目と 65 週目に、行動試験を実施するとともに、飼育終了時に採取したサンプルを

用いて、血漿と脳の解析を実施し、BE による認知症予防効果を評価した。その結果、BE 摂取は加齢による認知機能の低下を予防した。そのメカニズムは、アミロイドの蓄積とグリア細胞の活性化を抑制していることが示唆された。また、BE の摂取は耐糖能異常も予防することも確認した。以上の効果は BE 摂取中止後 14 週間持続した。

図 1.BE による認知障害予防の概要

A11 Effect of polyphosphate and phosphoric acid on appressorium

formation in Pyricularia oryzae

Yang X, Xiang Z, Nakayashiki H, Ikeda K Graduate School of Agricultural Science, Kobe University

Pyricularia oryzae is one of the most harmful plant pathogenic fungi in agricultural production in the world, causing rice and wheat blast. In the infection process, the germination and the appressorium formation of *P. oryzae* play essential roles. This process is regulated by various factors, including external environmental conditions and intracellularmechanisms. In this study, we found that treating the host leaves with sodium polyphosphate can reduce the lesion caused by *P. oryzae*. In order to elucidate the mechanism of disease suppression, we used a phosphoric acid solution to evaluate whether the concentration or pH affects appressorium formation of *P. oryzae*. Solutions with different pH (4.5, 5.5, 6.5, 7.5, 8.5, 9.0) were prepared by combing NaH₂PO₄ in Na₂HPO₄. We found that the inhibition of appressorium formation became more pronounced as the pH increased. However, even at the same pH, the inhibition of appressorium formation but PO₄³⁻ exerts inhibitory effects on the appressorium formation of *P. oryzae*, indicating the potential development of phosphates as antifungal agents for rice blast.

A12

T7ファージ由来の転写系を利用した酵母遺伝子スイッチの開発

堀 智彦¹, 冨永将大^{1,2}, 梶 亘佑¹, 近藤 昭彦^{1,2,3,4}, 石井純^{1,2} ¹神戸大院・科技イノベ,²神戸大・先端バイオ工研セ³神戸大院・工,⁴理研・環境資源

【目的】合成生物学は、人工的に設計した生命機能を持つ細胞を創出することを目指す学問である。本 分野において、多様な細胞の振る舞いを実現するために、化学物質の濃度に応答して遺伝子発現をコン トロールする遺伝子スイッチが必要不可欠である。しかし、真核微生物である酵母での遺伝子スイッチの工 学研究は、原核微生物である大腸菌でのそれと比較して遅れている。これは転写因子、ポリメラーゼなどの 制御因子が複雑に絡み合う酵母遺伝子発現系について、個々の要素が機能に与える影響を正確に予測で きないためである。そこで本研究では、酵母内の因子と混線しない T7 ファージ由来の遺伝子発現系を 用いた、シンプルな設計の酵母遺伝子スイッチの構築を目的とする。

【方法・結果】 Bacteriophage T7 由来の RNAP(T7 RNAP)とそのプロモータ(P_{T7})からなる酵母遺伝 子発現系を用いる。 P_{T7} に Pseudomonas protegens 由来の転写因子(PhIF)の結合配列(phIO)融合した人 エプロモータ(P_{T7phIO})を構築した。 P_{T7phIO} 下流に配置した緑色蛍光タンパク質(GFP)の発現は,誘導 物質 2,4-diacetylphloroglucinol (DAPG)非添加時には PhIF により抑制され,添加時には最大で 35 倍亢 進された。このように、T7 ファージ由来の遺伝子発現系を利用して、酵母遺伝子スイッチが容易に作出 可能であることを実証できた。本発表では、他の転写因子を用いた酵母遺伝子スイッチのシリーズ開発 の試みについても紹介するとともに、本手法の有用性について議論したい。

酸化、還元条件下におけるタウ液滴の凝集機構の解明

道上佑希¹、大橋祐美子^{1,2}、益井歩未¹、柚佳祐¹、山口圭一³、河田康志⁴、茶谷絵理¹ ¹神戸大・院理、²東工大・研究院・細胞センター、³阪大・院工、⁴鳥取大・院工

タウタンパク質は液-液相分離(LLPS)を引き起こし、細胞内で液滴を形成する。またタウが線維状に 凝集したアミロイド線維は、神経細胞に沈着するとアルツハイマー病などの病気を引き起こす。近年の 研究により、タウの液滴がアミロイド線維の形成を促進することが発見されたが、その機構の詳細は未 解明である。このような背景から、我々は、タウタンパク質が液滴を介してアミロイド線維を形成する 機構の解明を目標としている。

本研究では、タウタンパク質を中性条件下 で溶解し、クラウディング剤を添加して、液滴 の形成反応を進行させた。さらに生体内の酸 化ストレスによる酸化還元状態の変化に注目 して、還元剤の有無が液滴の形成に与える影 響を解析した(図1)。顕微鏡で観察した結果、 酸化条件下ではジスルフィド結合の形成が進 行することで、還元条件下に比べて小さくて 不規則なアミロイド線維を形成することが分 かった。

図 1. タウタンパク質の液滴の観察

A14

未分化性腺の精巣化へのビタミン D 受容体の関与

藤川大誠¹、横山俊史²、桐月優輔¹、犬塚千嘉³、河合穂香³、万谷洋平²、星信彦²

1 農学研究科 資源生命科学専攻 博士前期課程、2 農学研究科、3 農学部

【背景】性決定遺伝子 Sry は精巣化実行遺伝子 Sox9 を直接的に活性化し, 胎子未分化性腺内の支持前 駆細胞をセルトリ細胞へと分化誘導する. Sry の発現は性腺中央部から開始され, 頭側および尾側に広 がるが, その時空間特異的発現の開始機構については不明な点が多い. 一方, 当研究室における網羅 的遺伝子発現解析において, ビタミン D 受容体 (Vdr) が Sry 発現開始期の性腺中央部で高発現してい た. そこで, バイオインフォマティック解析および器官培養系を用いて, マウス未分化性腺の精巣化 への Vdr の関与について検討した. 【結果と考察】ChIP-Atlas の結果, 既知の Sry 上流因子の一つであ る Gadd45g の上流配列と, Sox9 の上流配列に Vdr が結合する可能性が示された. また, Vdr の結合予 測配列または類似する配列が Gadd45g, Sry, Sox9 および分化が進んだセルトリ細胞で発現する Amh の

上流に存在した.器官培養の結果,Vdrのアゴニスト添加群(カ ルシトリオール群)および対照群の両者で,Sox9が高発現して いた.対照群のSox9発現が高いため,今回検討した培養2日目より も早い段階で,VdrがSryやSox9の発現を促進させた可能性が残っ た.一方,Amhについては,カルシトリオール群で発現の増強 が認められた.以上の結果より,Vdrが未分化性腺の精巣化に 関与することが示唆された.

	Amh陽性細胞(●)の出現範囲				
	全域	中腎側	中央部の。	み 陰性	
<			341	\sim	
カルシトリ	3	3	4	9	
オール群	Ũ	0		Ũ	
対照群	0	0	4	14	
図 Sry	発現開	肩始期から	2 日青	間培養した	
性腺に	おける	Amh 陽性	細胞の	の出現範囲	

B6Js-XY^{POS}マウス性腺における Sox9 発現の消退

桐月優輔¹,横山俊史²,藤川大誠¹,加藤栞²,犬塚千嘉³,河合穂香³,万谷洋平²,星信彦² ¹農学研究科 博士前期課程 資源生命科学専攻,²農学研究科,³農学部

マウス未分化性腺において性決定遺伝子 *Sry* の発現が遅延すると、精巣化が破綻して卵巣や卵精巣が 形成される. C57BL/6JmsSlc (B6Js) 遺伝的背景において、安定性が低い *Mus musculus poschiavinus* 由 来の *Sry* を有するマウス (B6Js-XY^{POS}) では、卵巣化する傾向が高い [Yokoyama *et al.*, 2019]. 一方、 B6Js-XY^{POS} の胎子性腺では *Sry* 発現の遅延しない個体が多数存在したことから、*Sry* の下流で精巣化に 機能する *Sox9* の発現上昇または維持が不十分で、卵巣化することが示唆された. そこで、B6Js-XY^{POS} における *Sox9* 発現の消退時期について検討した. (%)

胎齢 14.5~15.5 日では Sox9 陽性細胞を含む性腺が多 数存在したが, Sox9 陽性細胞の多くは中腎側に散在し た.新生子性腺においても Sox9 陽性細胞を含む性腺が 出現したが,その割合は胎子期よりも減少した.性成 熟後も Sox9 発現を伴う精巣を有する個体が少数出現し たが,多くの性腺は卵巣で Sox9 陽性細胞は殆ど認めら れなかった.以上の結果から,B6Js-XY^{POS}の Sox9 発現 の多くは胎子期に消退し,一部性腺を除いて性成熟期 まで残存しないことが明らかとなった.

図:Sox9陽性性腺を有する個体の割合

A16

筋内脂肪形成に関わる特異的な遺伝子の発現調節に関する研究

○北村千晶^{1,2}、細田真菜²、福田伊津子²、白井康仁²、上田修司² 農学研究科 生命機能科学専攻 博士前期課程¹、神戸大院・農²

骨格筋に脂肪が蓄積する異所性脂肪は、筋肉減退症の発症要因の一つである。黒毛和種牛は、筋内脂肪が蓄積 する「霜降り」の遺伝的な形質を有することから、異所性脂肪の形成メカニズムを解明に向けたモデル生物として注目 されている。我々は、黒毛和種牛肉の次世代シーケンス解析(RNA-seq)を行い、筋内脂肪において高発現で且つ特 異的に発現する collagen type IV alpha 5(COL4A5)などの 8 種類の遺伝子を見出した。本研究では、筋内脂肪形成 に脂肪細胞周辺の微小環境が影響すると仮定し、黒毛和種牛の脂肪前駆細胞(DFAT)における COL4A5 などの細 胞外基質の発現調節機構の検討を行った。

DFAT は、と畜直後の黒毛和種牛の皮下脂肪から脂肪細胞をコラーゲナーゼ処理で回収し、天井培養法によって 脱分化することで調製した。得られた DFAT は、分化誘導培地に交換することで、油滴を蓄積する脂肪細胞に成熟す ることを確認した。COL4A5 の上流シグナルを探るため、RNA-seq のデータを Pathway 解析した結果、筋内脂肪に特 徴的なシグナル経路として、TGF-β シグナルが高いスコアでヒットすることを見出した。そこで、TGF-β1 受容体阻害剤 (SB525334)を DFAT に処理したところ、TGF-β1 受容体の下流で働く SMAD2/3 のリン酸化が抑制されることをウェス タンブロッティングで確認した。また、細胞外基質の遺伝子を qPCR で定量した結果、SB525334 によって COL4A5 の mRNA の有意な発現低下を確認した。以上より、DFAT の COL4A5 発現への TGF-β1 シグナルの関与が示唆された。

ラット大腸の粘膜内および粘膜下組織における

神経系の生後変化に関する組織学的研究

由田健人¹、万谷洋平²、森下理奈子³、横山俊史²、星信彦²

1)農学研究科 博士課程前期課程、2)農学研究科、3)農学研究科 博士課程後期課程

当研究室ではこれまで、ラット回腸における粘膜内神経ネットワークおよび粘膜下組織に存在する神経 細胞の生後変化を明らかにしてきた。本研究では、出生直後(P0)、2週齢(2wk)、4週齢(4wk)の大 腸各部位(盲腸・上行結腸・下行結腸)における粘膜内神経ネットワークの発達程度および粘膜下神経 細胞数などを調べた。その結果、粘膜固有層における神経線維の密度および粘膜下組織における神経細 胞の頻度は、いずれの部位においても P0・4wk と比較して 2wk で高い値を示した。続いて部位間で比 較したところ、P0において、粘膜下組織における神経細胞が盲腸では高頻度に認められたが、上行結 腸・下行結腸ではほとんど認められなかった。また P0において、盲腸では他の部位と比べて神経線維 が密に存在していた。2wk および 4wk では盲腸・下行結腸と比べて上行結腸の粘膜下組織において高頻 度に神経細胞が認められた。また 2wk の上行結腸では、上行結腸特有である粘膜とダの付け根の粘膜下 組織に多く神経細胞が局在していた。以上の結果から、大腸各部位における粘膜内神経ネットワークお よび粘膜下神経細胞は、P0・4wk 時点より 2wk で最も密に存在する点で共通すること、上行結腸では粘 膜とダの付け根の粘膜下組織に神経細胞が 2wk 頃に多く出現するという特徴的な生後変化を経ること が示唆された。

B01

凝集性低分子化合物による DNA 分解酵素の機能阻害

波部俊亮¹、清水なつみ²、森脇智子²、青井貴之³、池田真理子⁴、森田健太²、丸山達生² 工学研究科 博士前期課程 応用化学専攻¹、神戸大院・工²、神戸大院・医³、藤田医大⁴

劇症型溶血性連鎖球菌(溶連菌)感染症は、病巣が急速に拡大し、致死率が30%を超える重篤な疾病で ある。現在、その治療法は病巣の切除と抗菌薬投与に限られる。白血球の一種である好中球はDNA で 構成された好中球細胞外トラップ(NETs)を放出することで病原菌の殺菌を試みる。ところが、劇症型 溶連菌は、DNA 分解酵素(DNase)を分泌することで NETs を破壊する。そのため、患者は NETs によ る溶連菌への抵抗性が低下してしまう。ここで、当研究室では、Mannan 007(Mn007)¹¹¹という低分子 化合物が水溶液中で凝集することで DNase I を阻害することを見出した(Fig. 1)。Mn007 は溶連菌の分

泌 DNase を阻害することで新たな溶連菌感染症の治療薬となり得る。 しかし、DNase I の阻害に関係する Mn007 の部分構造は明らかになっ ていない。そこで本研究では、Mn007 の部分構造を分子工学的に凝集 させ、阻害部位を明らかにすることを目的とした。具体的には、Mn007 の部分構造に炭素鎖を導入し凝集させ、DNase I に対する阻害能の有無 を調べた。さらに、リポソーム上に配列させ、阻害部位の同定を試みた。 Mn007 の右側の部分構造に炭素鎖を結合した Compound 1 は Mn007 と 同様に、凝集することで DNase I を阻害した。 [1] Lv, F. et al., Bioorg. Med. Chem 2015, 23, 7661.

Fig. 2 Molecular structure of Compound 1

自己組織化能を持った多環芳香族化合物による

アポトーシスの誘導

梅村陸1、清水なつみ1、森田健太1、丸山達生1

1工学研究科 博士前期課程 応用化学専攻

現在、ガンの治療法として抗ガン剤を用いた化学療法が一般的に行なわれている。しかし、抗ガン剤 は正常細胞に対しても作用し、副作用が生じることが問題となっている。そこで、本研究では細胞の死 滅機構の1つで、「細胞の自殺」と呼ばれるアポトーシスに着目し、細胞を自死させる新たな分子の開

発を試みた。アポトーシスを誘導する方法として、細胞 膜上に存在しアポトーシス誘導に関与する Fas 受容体 (Fas-R)に着目した(図 1)。また、一般に Fas-R と相互 作用する Fas リガンドは、3 量体へと自己組織化するこ とで初めてアポトーシス誘導の活性を発現することが 知られている。これらの機構に着想を得て、「自己組織 化体を形成し Fas-R と相互作用することで、アポトーシ スを誘導する新規化合物」の開発に挑戦した。本研究に て新たな殺傷機構を解明することにより、新規抗ガン剤 の開発に繋がると考えている。

図1 本研究での流れ

B03

D-ペプチドによるアミロイドβの線維化阻害

三輪陽彦¹、瀬口史歩²、林采佳²、森田健太²、茶谷絵理³、丸山達生² ¹工学研究科 博士前期課程 応用化学専攻、²神戸大・工、³神戸大・理

本研究では D 体ペプチドを用いて、アミロイド β(Aβ)の線維化を阻害することを目的とする。Aβ は線 維状に凝集・蓄積することで細胞毒性を発現する。これが脳内で起こると、神経細胞の細胞死が引き起 こされ、認知機能が低下する。これはアルツハイマー型認知症(AD)の発症過程としてもっとも有力であ るため、Aβ の線維化を阻害することが AD の治療・予防に重要であると考えられている。現在までに、 抗体医薬などによる AD の治療が試みられているが、完治に繋がる治療薬の開発は難航している。

そこで本研究ではステレオコンプレックス(SC)の概念に基づいた Aβの線維化阻害剤となりうる D 体 ペプチドの開発を目的とした。SC とは鏡像異性体の関係にある分子同士の相互作用によって形成され

る複合体のことである。当研究グループの先行 研究では短鎖 L/D ペプチドは疎水性相互作用 と静電的相互作用を駆動力として、SC が形成 されることを実証した。本研究ではL体アミノ 酸からなる A β の一部の配列と相互作用するこ とを狙って、SC を形成する D体ペプチドを設 計した。これにより A β とD体ペプチドの相互 作用から、A β の線維化阻害に繋がると考えた。

銅フリークリック反応による異種材料接着

神吉悠介、金光彩雪、山本翔太、宮原弘稀、森田健太、丸山達生

工学研究科 博士前期課程 応用化学専攻

接着は優れた接合方法である一方で、接着する材料の種類 が異なると接着しにくいという課題がある。通常、接着は 接着剤を用いて行われるが、材料の種類が異なると接着剤 と材料との親和性に違いが生じ、接着強度が低下するため である。そこで本研究では、2種類の材料表面にそ れぞれ環状アルキンとアジド基を提示し、重ね合わ せ自発的に銅フリークリック反応を進行させ接着 する方法を開発した(Fig. 1)。この方法では、材料の

特性が反応に関与しないため、異種材料同士でも問題なく接着できる。 実際に、本研究の方法による接着を試みた(Fig. 2)。接着する材料とし て、ポリメタクリル酸メチル(PMMA)とガラス、ポリエチレンテレフ タラート(PET)、ポリ塩化ビニル(PVC)を用意した。結果から、いずれ の組み合わせにおいても接着できることが分かった。特に、PMMA-ガラスでは市販の接着剤とほぼ同等の接着強度を示した。本発表では、

Fig. 1 Schematic illustration of the adhesion

接着環境が接着強度に及ぼす影響や、銅フリークリック反応と接着との関係性についても議論する。

B05

表面分解により再利用可能なアミノ基提示表面の作製

星野風河1、吉田沙理那1、森田健太1、丸山達生1

1工学研究科 博士前期課程 応用化学専攻

【研究概要】アミノ基を提示したプラスチック表面は 利用価値が高い。例えば、DNA や酵素、リガンドを固 定化することでバイオセンサーとしての利用や、金属 ナノ粒子を固定化することで触媒としての利用が期待 できる。しかしプラスチック表面を機能化するにあた り、表面自由エネルギーの高いアミノ基部位がバルク 中へ埋もれてしまうこと、表面由来の官能基に限定さ れてしまうこと、プラズマ等専用の装置が必要となる こと、機能化したプラスチック基板を使い捨ててしま うことなどの課題が多く存在する。当研究室の先行研

究では高分子を塗布するという簡便な手法を用いることで、これらの課題の多くを解決し、プラスチ ック表面にアミノ基を提示することに成功した。しかし、使用後の基板を使い捨てなければならない という課題は未だに残り続けている。そこで本研究では、塗布する高分子に易分解性高分子を用いる ことで再利用可能なアミノ基提示プラスチック表面の作製を試みた。作製した塗膜表面が分解するこ とによって、表面が更新され、再利用可能か検討を行った。 Bo6 高分子コーティングによる材料表面へのアジド基の提示

> 天羽輝¹、神吉悠介¹、森田健太¹、丸山達生¹ ¹工学研究科 博士前期課程 応用化学専攻

アジド基と環 状アルキン間 の銅フリーク リック反応は 無触媒、生体内 でも反応が進 行するため

DNA やタンパク質などの生体分子を修飾する際に広く用いられている。近年、クリック反応を固体表 面で利用し、生体分子を固定することでバイオチップや医療診断デバイスを作製することが注目されて いる。しかし、これまでに報告されたものの多くは、金やガラスなどの無機材料を用いており、前もっ てプラズマや化学薬品などによる煩雑な処理を行う必要があった。そこで、本研究ではクリック反応可 能なアジド基を持つ高分子溶液を塗るだけで完結する簡便な方法によってアジド基を提示した。また、 クリック反応可能なアジド基の密度の定量、制御に成功した。さらにバイオチップへの応用に重要な表 面パターニングを高分子コーティング基板表面で試みた結果についても報告する。

B07

自己再生型ペロブスカイト光触媒の顕微分光観測

竹内愛斗1、隈部佳孝2、立川貴士2,3

1理学研究科 博士前期課程 化学専攻、2神戸大・分子フォト、3神戸大院・理

次世代の太陽電池材料として注目されている CH₃NH₃PbBr_xI_{3-x} などのペロブスカイトは、水との接触で分解するという欠点が ある[1]。近年、水溶液系においてペロブスカイトが安定に存在 することが実証された[2,3]。この条件でペロブスカイトは自己 再生能を有する水素生成光触媒としてはたらくが、その基礎的 理解は進んでいない。そこで本研究では、水溶液中におけるペロ ブスカイト光触媒の発光特性を、蛍光顕微鏡を用いて評価した。

図1に、CH₃NH₃PbBr_{2.6}I_{0.4}の405 nm レーザー照射下における 図1. 発光スペクトルの時間変化 発光スペクトルの時間変化を示す。光照射によって、発光がレッ

ドシフトした。これは、結晶中のハロゲン分布が変化する相分離[4]が進行した結果であると考えられる。

- [1] A. Kojima et al., J. Am. Chem. Soc. 2009, 131 (17), 6050–6051.
- [2] A. Takeuchi et al., J. Phys. Chem. Lett. 2023, 14 (10), 2565–2572.
- [3] S. Park et al., Nat. Energy 2017, 2 (1), 1-8.
- [4] M. C. Brennan et al., ACS Energy Lett. 2018, 3 (1), 204–213.

スズ系有機無機ペロブスカイトの水中発光挙動の解析

田中直純1、隈部佳孝2、立川貴士1,2

¹理学研究科 博士前期課程 化学専攻、²神戸大・分子フォト

有機無機ペロブスカイトは有機カチオン、2 価の金属イオン、ハロゲンイオンで構成される三元系イオン結晶である。太陽光利用に適した特性をもつことから、光機能性材料として近年注目されている。 一方で、一般的に用いられる鉛を用いた有機無機ペロブスカイトは、水や酸素などの環境条件に対して 不安定であること、鉛の毒性が強いことから、実用化には課題が残る。これらの課題を克服する材料と

して、DMASnI₃(DMA=Dimethylamine)の構成のペロブスカイトが近年報告 された。[1] しかし、水中での電荷キャリアダイナミクスや、安定性の理 由となる局所構造変化については未だ不明瞭である。本研究では蛍光顕微 鏡を用いて DMASnI₃の発光を観測し、その局所構造変化との関係について 考察した。蛍光顕微鏡観測より、水中の DMASnI₃の発光は大気曝露によっ てレッドシフトした (Fig. 1.)。これは欠陥が生成したことによると推察で きる。また、XPS の結果から、表面酸化が水によって抑制されていること も示唆された。これらの結果から、DMASnI₃は水中で部分的に劣化し、そ れを活かした光機能性を示す材料であると考察できる。

 Figure 1. 大気曝露による発

 光の変化。灰色が Ar 雰囲気、

 黒が大気条件での発光スペク

 トルである。

[1] D. Ju et al., Angew. Chem. Int. Ed. 2018, 57, 14868-14872.

B09

金ナノ粒子同士の連結を利用した水溶液中での

導電性金薄膜の形成

吉田沙理那1、槌井貴嶺1、松本弥万里1、森田健太1、丸山達生1

1工学研究科 博士前期課程 応用化学専攻

金被覆表面は、導電性が高く、酸化されにくく安定という性質があり、導電材料へ応用されている。 金被覆表面の作製例として金メッキや金蒸着があるが、これらの方法は、適用可能な材料が限定される こと、専用装置や高温高真空条件が必要な点が課題である。そこで本研究では、金被覆表面を作製する 材料として金ナノ粒子に着目した。当研究室での先行研究において、機能性高分子を塗布しアミノ基を 提示したプラスチック表面に、静電的相互作用により金ナノ粒子を固定化することに成功した。本研究 ではこれを応用し、固定化した金ナノ粒子を成長させ、さらに成長した粒子同士が連結することで金薄 膜を形成することを目的とした(図1)。その戦略として、金ナノ粒子を固定した基板を成長溶液に浸し、

固定化した粒子上で金イオンを還元する手法を考 えた。本手法では特別な装置や条件が必要なく水 溶液中で反応を行えるため、大規模かつ低コスト で金薄膜を作製する新たな技術になると考える。

Polymer(PMBA) coating	Au nanoparticle	Au thin film
Plastic substrate	Growth	Connection
	図1 研究概	略図

ヒスチジン含有ペプチド脂質を利用したアミド結合の分解

木村俊久1、清水なつみ1、森田健太2、丸山達生2

工学研究科 博士前期課程 応用化学専攻1、神戸大院・工2

アミド結合は、共鳴安定化により強固な結合を形成する。そのため、この結合を分解するためには強酸や強塩基、高温などの激しい反応条件が必要であり、より穏和な条件が求められている。また、天然には耐熱性を有するタンパク質が存在し、例えば RNA 分解酵素である RNase は水熱処理では完全には不活性化できない。そこで、このような耐熱性を有するタンパク質を分解できる方法が必要である。

私は穏和な条件下でアミド結合を分解する酵素に着目した。タンパク質分解酵素の一つであるセリン プロテアーゼは、活性中心である Ser-His-Asp のアミノ酸三残基が連鎖的に反応することでアミド結合

を分解している。そこで本研究では、このメカニズムからヒントを得 て、活性中心の一つであるヒスチジン (His) を含むペプチド脂質を 設計し、His 含有ペプチド脂質を用いたアミド結合の分解を試みた。 ペプチド脂質とは親水性のペプチド鎖と疎水性のアシル鎖から構成 されており、両親媒性により自己組織化体を形成する。His 含有ペプ チド脂質の自己組織化体に対して、分解対象であるタンパク質を加 えると、タンパク質に対して His 含有ペプチド脂質が作用し、タンパ ク質のアミド結合を分解できると考えている。

図1 本研究の概略図

B11

p型 CNT のドープ状態安定性における HSAB 則

河崎佳保¹、小柴康子^{2,3}、赤池幸紀⁴、衛慶碩⁴、堀家匠平^{2,3,5}、石田謙司^{2,3,6} 工学研究科 応用化学専攻 博士前期課程¹、神戸大院・工²、神戸大先端膜工学セ³、 産総研・ナノ材⁴、神戸大環境セ⁵、九大院・工⁶

カーボンナノチューブ (CNT) のデバイス応用にはドーピングによるキャリアの制御が必要であるが、 ドープ状態の安定性、特に耐熱性が低い点に課題がある。本研究では、p型ドープ状態にある CNT を『ホ ール導入された CNT とドーパント由来の吸着アニオンからなる錯体 (Fig.1)』と見なすことで、HSAB (Hard and Soft Acid and Base) 則に基づくドープ状態の安定性メカニズム解明を目指した。p型 CNT は 正電荷が数 nm にわたり非局在化することから、"軟らかい"カチオンと捉えられる[1]。よって、吸着 アニオンが同様に軟らかければ、ドープ状態は安定化すると考えられる。さらに、ドープ状態が不安定 な場合でも吸着アニオンをより軟らかいアニオンに置換することによりドープ状態を安定化させる技 術の確立を目指した (Fig. 1)。プロトン酸 (HNO₃、HCl 等) で CNT 自立膜をドープ後、軟らかいアニ オン (TFSI⁻) 含むリチウム塩溶液に浸漬させることで、ドーパント由来のアニオンと TFSI⁻間のイオ

ン交換を生じさせ、高導電率と1年以上 にわたるドープ状態の安定性(空気中 100°C)を得ることに成功した。

[1] Eckstein *et al.*, *ACS Nano* **11**, 10401 (2017).

Fig.1 CNTのドーピングおよびイオン交換の概要図

有機超塩基イオン液体によるカーボンナノチューブの

電気化学ドーピングと熱電特性制御

西中茉佑子¹、小柴康子^{2,3}、赤池幸紀⁴、衛慶碩⁴、堀家匠平^{2,3,5}、石田謙司^{2,3,6}

工学研究科 応用化学専攻 博士前期課程¹、神戸大院・エ²、神戸大先端膜工学セ³、産総研 ナノ材⁴、神戸大環境セ⁵、九大院・エ⁶

カーボンナノチューブ(CNT)は新規熱電発電材料として注目されている。熱電素子の発電量を高めるため、p型とn型の材料を組合わせたモジュール化が必須であり、各極性へと作り分けるドーピング

が必要である。また、性能指標であるゼーベック係数と導電率はキャリア濃度に対して相補的な関係にあるため、キャリア濃度の最適 化も求められる。加えて、熱源設置下での長期動作に耐えるため、 ドープ状態の高温下安定性を確保する必要があるが、CNTのドー プ状態、特にn型極性は一般に不安定である。我々はこれまで、有 機超塩基 TBD によるドーピングで高耐熱 n型 CNT が得られるこ とを報告してきた[1]。本研究では、TBD カチオンを含むイオン液 体を合成し、これを電解液とした電気化学ドーピングにより、CNT の極性制御と熱電特性の変調(図1)ならびにp型/n型双方の高耐 熱化に成功した。 [1] Horike et al., *Nat.Commun.* 13, 3517 (2022)

ゼーベック係数と導電率における印加電圧 依存性.

B13 毛髪トリートメント効果を有する有機酸とアミンの新規化合物合成

○片山耕太郎¹・宮本紘幸¹・堀田弘樹^{1,2}・山崎祥子³・田中良宣⁴・辻野義雄² (1海事科学研究科 博士後期課程,2科学技術イノベーション研究科,3奈良教育大学,4B. Products Taco)

天然に存在する化合物であるムコン酸¹⁾と、化粧品パーマ液として使用さ れている 2-アミノエタンチオール(システアミン)を原料に、図1に示 すような新規化合物を含む混合物を得た。ムコン酸と 2-アミノエタンチ オールが1分子ずつ反応したモノ付加体(1)と、ムコン酸と 2-アミノエタ ンチオールが1:2 で反応したビス付加体(2)が得られた。ムコン酸と 2-アミノエタンチオールを当量ずつ仕込んで反応させた場合、1 がより多 く生成した。2-アミノエタンチオールを2 当量以上仕込んだ場合 2 がよ り多く生成した。図2に示すように、アフリカ人縮毛を、これらの混合 水溶液に浸漬させ、加熱処理することにより、図2(右)で示すように ストレートに矯正する効果が確認できた。その他にも手触りなどの改善 も見られ、機能性試験もおこなっている。本化合物はヘアケア製剤への 応用が期待される。

1) Curr. Opin. Biotechnol. 2017, 45:136-143

図 2.処理を施した毛髪
 (左)未処理のアフリカ人毛
 (中)従来のパーマ処理をしたアフリカ人毛
 (右) 1,2を含む水溶液で処理した毛髪

金属結合性クロス α 型ペプチドファイバーの設計

山譯千慧1、田村厚夫2

理学研究科 博士前期課程 化学専攻¹、神戸大院・理²

ペプチドナノファイバーは生体適合性の高さ、自己集合性、機能性付与の容易さから、工業・医療分 野において有用な素材として世界中で研究が進められている。本研究では、薬物送達や金属ナノワイヤ 用テンプレートへの応用を視野に入れ、金属が規則的に結合するナノファイバーを形成するペプチドを

設計し、その機能や性質について検討した。設計には、ヘリックス軸と垂直な方向 にペプチドが積層する"クロス α ヘリカル構造"(Fig.1)で中空のナノファイバーを形 成する配列を元とし、金属結合部位として His を導入した。設計したペプチド (MB-Lahf20H)について、円二色性(CD)測定と原子間力顕微鏡(AFM)により二次構造 と形状を調べたところ、低 pH 条件下で繊維を形成し、2 週間繊維形状を持続した。 このペプチドに、医薬品に利用される Pt²⁺を添加したところ、繊維構造の増加と熱 安定性向上が示唆された。次に、MB-Lahf20H の配列をもとに、分子の正味電荷を 調整することで中性条件下での繊維化を目指した 2 つのペプチド(MB-Lahf20Hb/c)

を設計し、二次構造と形状の変化を観察した。このうち MB-Lahf20Hc は、中性条 件下で徐々にヘリックス構造の繊維を形成する様子が観察された。 [1]F. Wang et al. *Nat. Commun*, **12**, 407 (2021)

Fig.1 クロス α ヘリカル 構造のイメージ図[1] (a)軸に垂直な断面 (b)軸方向の積層

B15 Mie 共鳴により高輝度な散乱を示すシリコンナノ粒子をコアと する生体用蛍光センシングナノプローブの開発

足立将人¹、杉本泰¹、森田健太²、丸山達生²、藤井稔¹

工学研究科 博士前期課程 電気電子工学専攻1、応用化学工学専攻2

近年、散乱や蛍光などの光機能を有するナノ粒子を生命科学・医療分野へ応用する研究が活発に行われている。これまでに、金属ナノ粒子の局在表面プラズモン共鳴(LSPR)による暗視野散乱と付与した蛍 光体の増強蛍光を利用し、細胞イメージング等に応用した研究例が報告されている。しかしながら、金 属材料には非輻射エネルギー移動によるクエンチングや、発熱による蛍光体の劣化などの課題がある。 当グループは光損失が少なく、高い屈折率(*n*-4)をもつシリコン(Si)ナノ粒子[1]に着目し、Siナノ粒

子表面に蛍光色素を修飾することで、高効率な暗 視野散乱と蛍光を用いたデュアルモードイメージ ングを実証した[2]。本材料は暗視野観察(白色光 照射下)で散乱を示し、単色光励起で蛍光を示す。 本研究では、散乱によるイメージングとグルタチ オンにより蛍光をON/OFFする診断機能を併せ持つ ナノ粒子へと展開する。

[1] H. Sugimoto et al. Adv. Opt. Mater. 8, (2020).

[2] M.Adachi et al. Small 2023, 2207318

Covalent Immobilization of Silicon Nanospheres on Silica

Substrate

Oanh Vu, Hiroshi Sugimoto, Minoru Fujii

Graduate School of Engineering, Electrical and Electronic Engineering Department, Master Program

In this work, we introduce an approach to immobilize silicon nanospheres (Si NSs) on a silica substrate and characterize the optical properties of the fabricated substrates. Firstly, monodispersed Si NSs were prepared via the thermal disproportionation of silicon monooxide (SiO) lumps and the sucrose density gradient centrifugation process. To produce the self-assembled Si NSs on SiO₂, the surface of size-separated Si NSs was functionalized by (3-glycidoxypropyl)trimethoxysilane (GOPTS). In the next step, a slice of silica substrate, which was modified by (3-aminopropyl)triethoxylane (APTES) to obtain the amino groups on the surface, was immersed in GOPTS-decorated Si NSs dispersed in methanol solution, then washed again by methanol. The immobilized Si NSs were stabilized by the covalent bonds between amino groups and GOPTS. The recorded reflectance spectra of broad-size distribution Si NSs on SiO₂ show a specific peak due to Mie resonance and another peak at a longer wavelength due to the interference between Si NSs film and the SiO₂ substrate.

B17 含窒素芳香環における分子内 C-H アリール化反応

中西裕貴1、岡野健太郎2、森 敦紀2,3

工学研究科 博士前期課程 応用化学専攻1、神戸大院・エ2、神戸大膜先端3

分子内 C-H アリール化反応は環構造が縮合した化合物を簡便に合成するために有用な反応である。 特に、窒素原子を含む縮環構造は多くの医農薬や機能性材料に含まれる骨格であり、その簡便な合成法 の開発は有機合成の重要な課題である。当研究室では、C-H アリール化反応の研究開発を行ってきたが、 含窒素芳香環では低収率でしか反応が進行しなかった。本研究では、含窒素芳香環を基質とした分子内 C-H アリール化反応の反応条件を検討した。

従来の反応条件である酢酸パラジウム 10 mol% 触媒下、ピリジン誘導体 1 を用いて、塩基として 炭酸カリウム1当量を N,N-ジメチルアセトアミド (DMA)中、110 ℃で反応させると、縮環生成物 2 の収率はわずかに 4%であった。反応条件の検討 の結果、塩基を1当量から3当量に増やし、パラ ジウム触媒の配位子として PCy3、添加剤としてピ バル酸を用いることにより、縮環生成物2の収率 は 77%と大幅に向上した(図 1)。

ⁿ C ₈ H ₁₇ N N Br 0 1 0.10 mmol	K ₂ CO ₃ Additive 1.0 Pd(OAc) ₂ 10 Ligand 10 m DMA, 110 °0	eq) mol% ol% C , 24 h	2 NnC8H17
K ₂ CO ₃	Ligand	Additive	¹ H NMR yield
1.0 eq	none	none	4%
3.0 eq	PCy ₃	PivOH	77%

図1 ピリジン誘導体1における分子内C-Hアリール化

ジペプチド Gly-Phe 集合体の構造解析

迫綾香,齋藤真輝,枝和男,田村厚夫 神戸大学大学院 理学研究科 化学専攻

ペプチドの自己集合性は生体内で多くの役割 を担っており、近年自己集合性ペプチドを材料 開発に応用する例も増えてきている。本研究の 目的は、ペプチドに自己集合性をもたらすため の<u>最低限の要素を特定</u>し材料開発における分子 設計に貢献することである。これを達成するた め、以下のような特徴を持つ Gly-Phe(GF)という ジペプチドに着目した。このジペプチドは本研究 において初めて繊維形成能が明らかになったが、

これまでに報告されてきた<u>繊維形成ペプチドの中で最も分子量が小さい</u>。また、アミノ酸の中で唯一側鎖 を持たない Gly を含んでいるため、考慮すべき<u>分子間相互作用の種類が少ない</u>という特徴を有している。 さらに、単結晶 X 線回折の結果からその集合性は、両末端の静電相互作用及び芳香環のスタッキング、CH/ π相互作用に起因するということが分かった。このように、繊維と結晶という複数の形態を持つが、フー リエ変換赤外分光(FT-IR)測定の結果から各形態における原子レベルでの集合構造が同一であるという可 能性が示唆されている。

B19

Mie 共鳴シリコンナノ粒子のパーセル効果による

電気·磁気双極子発光制御

笠井大幹1、杉本泰1、藤井稔1

1工学研究科 博士前期課程 電気電子工学専攻、

近年、光周波数の磁場増強により、従来無視されてきた磁気双極子遷移レートを大幅に増大する技術が

注目されている。磁気双極子遷移増強により、希土類イオンの磁 気双極子発光の大幅な増強や、スピン禁制遷移の増強が可能にな る。光周波数域で大きな磁場増強を実現するために、本研究では Mie共鳴を示すシリコン(Si)ナノ粒子アンテナに着目した。高屈 折率誘電体であるSiナノ粒子は磁気共鳴モードにより、粒子近傍 に大きな増強磁場を誘起できる。しかし、このような光磁場増強 の実証・活用例は少ない。今回は、磁気双極子発光体をSiナノ粒 子近傍に配置し(図1)、磁気双極子遷移輻射レートの増大(パー セル効果)を示すことで、磁気的Mie共鳴による光と物質の相互 作用の増大を実証する。上記の目的のために、電気双極子発光と 磁気双極子発光を示すEu³⁺錯体をSiナノ粒子に表面修飾し、それ ぞれの発光の増強を定量的に評価する。

Figure 1. Schematic of coupling between magnetic Mie resonance of a Si nanoparticle and a magnetic dipole emitter.

高屈折率誘電体ナノ粒子の Mie 共鳴による

Förster 共鳴エネルギー移動の選択的な蛍光制御

大沢慶祐¹、杉本泰¹、藤井稔¹、

1工学研究科 博士前期課程 電気電子工学専攻

蛍光バイオセンシング・イメージングの高感度化に向けて、金属ナノ粒子の局在表面プラズモン共鳴 (LSPR)による蛍光増強を利用した研究が多数報告されている。さらに Förster 共鳴エネルギー移動 (FRET)を利用した手法では、LSPR による蛍光とエネルギー移動レートの双方を増強する試みも進んで いる。しかし、金属材料は光損失が大きいため、蛍光の消光や発熱による蛍光体の劣化などが課題とな

っている。我々は高い屈折率と低い消光係数により可視 光域で低損失な Mie 共鳴を示すシリコンナノ粒 子 (SiNP)に着目している。本研究では、粒径 100-200 nm の SiNP にドナー・アクセプタ蛍光分子(FITC・RITC)を修 飾し、発光スペクトル形状と FRET 効率の粒径依存性を 評価する。また、電磁気計算と組み合わせることで、SiNP の Mie 共鳴が蛍光スペクトルの形状と FRET 効率に与え る影響を議論する。

図1Si@(FITC,RITC)の散乱・発光スペクトル、及びド ナー・アクセプタの発光強度の比の粒径依存性

B21

ヘリシティ分解ラマン分光を用いた

誘電体ナノアンテナによる近接場のヘリシティ測定

志摩大輔1、四宮裕人1、杉本泰1、藤井稔1

1工学研究科 博士前期課程 電気電子工学専攻

ナノアンテナの電磁場増強効果によりキラル分子の円二色性を増大する手法は、高感度なキラルセン シングへの応用が期待されている。我々は電気的・磁気的 Mie 共鳴を示すシリコン(Si)ナノ粒子による 円偏光の近接場の増強の実現を目指している。本研究では、円偏光選択的なラマン散乱特性を示す遷移 金属ダイカルコゲナイドを用いた、円偏光照射下での Si ナノ粒子近傍

のヘリシティを測定する技術について報告する。

二硫化モリブデン(MoS₂)の OC、IMC モードのラマン信号は、それぞれ入 射円偏光(σ +)と同じヘリシティ(σ +)と反転したヘリシティ(σ -)を持つ。その ため、Si ナノ粒子近傍に MoS₂を設置しそれぞれの偏光特性を測定するこ とで、Si ナノ粒子の近接場のヘリシティに関する情報を取得できる。図1 に、Si ナノ粒子-MoS₂ 複合体のヘリシティ分解ラマンスペクトルを示す。 OC ピークにおいて σ -の信号(灰色)、IMC ピークにおいて σ +の信号(黒色) が検出されており、近接場のヘリシティが変化していることを示唆してい る。発表では、Si ナノ粒子のキラルな近接場についてより詳細に議論する。

図 1. Si ナノ粒子-MoS₂ 複合体 のヘリシティ分解ラマン散乱 スペクトル。

B22 六方晶窒化ホウ素の層間酸塩基反応を用いた 剥離膜の作製と発光特性

三嶋里奈¹,安達裕²,瀬川浩代²,内野隆司³

1理学研究科 博士前期課程 化学専攻,2物質・材料研究機構,3神戸大・理

h-BN の剥離によって作製される h-BN ナノシートは新しい物性 発現の場として期待される。近年,我々の研究グループは,h-BN / H_2SO_4 層間化合物に NH_3 ガスを反応させることで(NH_4) $_2SO_4$ が h-BN 層の剥離を伴いながら配向結晶成長することを報告した[1]。本 研究では,この手法を活用して新たな h-BN 剥離技術を開発するこ とを目的として実験を行った。h-BN / H_2SO_4 層間化合物を得るた め,h-BN 粉末と H_2SO_4 の混合液をオートクレーブ中で 200℃で 400– 500 時間加熱した。次に,h-BN / H_2SO_4 層間化合物を液相状態の NaHCO₃ と反応させた後,1-ペンタノールで溶媒抽出を行った。溶 媒抽出液について AFM 測定を行ったところ,h-BN 剝離膜と思わ

図 1. (a) Si 基板上の試料の AFM 像。 (b) 白線に沿った高さプロファイ ル。

れる厚み約 2nm, 幅約 2µm の膜の存在が確認できた(図 1)。h-BN の層間距離は 0.33nm であるため, ここで得られた h-BN 剝離膜は 5 – 6 層程度が積層したものだと考えられる。また,溶媒抽出液の発光 (PL) 及び発光励起(PLE) スペクトルを測定したところ,構造を有した発光スペクトルが確認できた。 以上の結果は,本手法により発光中心を有する h-BN ナノシートの作製が可能であることを示している。 [1] T. Tsujimura and T. Uchino, *ACS Omega* 6, 6482–6487 (2021).

B23

グラファイト層間化合物を利用したナノシートの作製

白木秀岳1、安達裕2、内野隆司3

1理学研究科 博士前期課程 化学専攻、2物質・材料研究機構、3神戸大・理

近年我々の研究グループは、六方晶窒化ホウ素(h-BN)粉末とH₂SO4 との反応により作製した h-BN / H₂SO4 層間化合物を NH₃の気相と 反応させることで層間で(NH₄)₂SO4 結晶が配向生成し、その結果 h-BN 層の剥離が進行すると報告した [1]。そこで上で述べた手法 と、既報の酸化剤を用いずにグラファイト/ブレンステッド酸層間 化合物を作製する手法[2]を応用し実験を行った。本研究では、グ ラファイトを H₂SO4 と混合し、オートクレーブ中で 200°C、24 時 間加熱し非酸化条件下で graphite/ H₂SO4 層間化合物を作製した。作 製した層間化合物に NaHCO3 水溶液を反応させ、層間で酸・塩基 反応を起こすことでグラファイトナノシートを剥離した。中和後 の溶液を 1-ペンタノールで溶媒抽出を行い、AFM 測定、TEM 測定 を行った。実験の結果、図 1.の AFM 像や図 2.の TEM 像、フーリ エ変換像に示すように結晶性が良い数層のナノシートが得られた。 [1] T. Tsujimura and T. Uchino, ACS Omega 6, 6482 (2021). [2] N. I. Kovtyukhova, et al. Nat. Chem. 6, 957 (2014).

図1. 剥離膜のAFM像と断面プロファイル

図 2. 剥離膜の TEM 像とフーリエ変換像

真空凍結乾燥法によるセシウムイオンの

無機アモルファス材料への固定化

濱田直輝、梶並昭彦

工学研究科 博士前期課程 応用化学専攻

本研究室ではガラスの真空凍結乾燥法(FD 法))を用いた低温合成についての研究を行っている。硝酸鉄(III)、リン酸及び硝酸セシウム水溶液の混合溶液に水酸化ナトリウム水溶液を滴下した後に、FD 法を用いてセシウムイオンが入った鉄リン酸塩ガラスを合成した。このガラスをろ過した試料を XRD、XPS、ICP 等の分析を行った。図 1 には、モル比 Fe:P:Cs=1:1:0.33 及び 1:2:0.5 の加熱乾燥試料の洗浄前後の

XRD パターンを示した。いずれのガラスも洗浄前に は硝酸セシウム及び副生成物の硝酸ナトリウムが存 在したが、洗浄によりそれらは除去され、結晶ピーク は現れなかった(HT は洗浄前、HT_WASH は洗浄後の 試料である)。これにより、鉄リン酸塩ガラスは結晶化 せずに高濃度のセシウムイオンを固定化できること が明らかになった。また、XPS 及び ICP の結果から は、FD 法で作製された鉄リン酸塩ガラスが耐水性や セシウムイオンの担持に優れていることがわかった。

B25

真空凍結乾燥法によるモリブデン酸イオンの 無機アモルファス材料への固定化に関する研究

刘恵鑫、梶並昭彦

工学研究科 博士前期課程 応用化学専攻

本研究室ではエネルギー消費量を削減できる真空凍結乾燥法(FD 法)という低温でガラスを合成す る方法について研究を行っている。本法により、モリブデン酸イオンを大量に固定化できる無機アモル ファス材料の作成を試みた。すなわち、2M Fe(NO₃)₃溶液と2M Na₂SiO₃溶液と1MNa₂MoO₄溶液を所定 モル比で混合し、pH を中性に調整し、加水分解ゲルを作成した。それを真空凍結乾燥させ、洗浄するこ とにより、試料を作成した。

図1に示すようにモル比 Fe:Si:Mo=2:1:1の試料につい て、洗浄前には副生成物の NaNO3のピークが見られたが、 洗浄後は除去されアモルファス試料であることがわかる。 したがって、FD 法により大量の Mo イオンを鉄ケイ酸塩 ガラスに固定化できることが明らかとなった。また、溶出 試験を行った結果、純水への Mo イオンの溶出速度は非常 に小さく、Mo イオンは鉄ケイ酸塩ガラス内に強く固定化 されていることが明らかとなった。

Fig.1 XRD patterns of Fe:Si:Mo = 2:1:1 glass

29

シリコンメタサーフェスの吸収増強を利用した

狭带域近赤外光検出

-Symmetry protected quasi-BIC による偏光検出-

森朝 啓介、杉本 泰、藤井 稔

工学研究科 博士後期課程電気電子工学専攻、

偏光状態は光が持つ自由度の1つであり、その観測には光検出素子の前段に偏光子、波長板、偏光ビ ームスプリッタなどのバルク光学素子が必要であり装置の小型化は難しい。我々は光検出素子上に入射

円偏光に依存した光吸収特性を持つナノ構造(メタサーフ エス)を形成することで素子の小型化と高解像度なフルス トークスイメージングが実現できると考えた。具体的には 図 1(a)に示す高さの異なる楕円状ナノディスクペアを配列 した構造を検討した。この構造ではディスクの長軸方向に 誘起される反平行な電気双極子(*p*₁, *p*₂)が干渉することで右 回り円偏光入射時のみ強い電場・吸収増強が発現している (図 2)。発表ではより詳細な吸収増強機構を説明する。

Figure1(a) Schematics of Silicon metasurface.(b) Electric field distribution the under right and left circularly polarization.

B27

有機/無機半導体ヘテロ界面における

バンド内光学遷移の発現と太陽電池への応用

鬼塚 遼平1、徳永 隼也1、朝日 重雄2、喜多 隆2

1工学研究科 電気電子工学専攻 博士前期課程、2工学研究科 電気電子工学専攻

我々は単接合型太陽電池の変換効率限界を超える太陽電池のコ ンセプトとして、2 段階フォトンアップコンバージョン太陽電池 (TPU-SC)を提案した[1]。TPU-SC はワイドギャップ半導体(WGS) とナローギャップ半導体(NGS)を接合した太陽電池で、NGS で生成 された電子がヘテロ界面に蓄積され、低エネルギーのフォトンに よって WGS に励起されることで TPU が起こる。これにより、太

陽電池の透過損失を減少させ、高い変換効率を実現できる。これま

Figure. Comparison of EQE with and without IR irradiation

でに、AlGaAs/GaAs ヘテロ接合を利用して TPU-SC 動作を実証しているが、TPU はさまざまな材料系で 実現できるコンセプトである。そこで、本研究では TPU を幅広い材料で確認することを目的とし、WGS に低コスト、簡易プロセスで大面積化が可能な MAPbI₃、NGS に n⁺-Si(100)基板を用いた。本報告ではこ の TPU-SC を作製し、外部量子効率測定において、明確に MAPbI₃の吸収端を確認したことを報告する。 [1]S.Asahi *et al., Nat. Commun.* **8**, 14962 (2017).

カルバゾマイシン Fの初の全合成

島悠之輔¹、馮宇軒²、岡野健太郎²、森敦紀^{2,3} 工学研究科 博士前期課程 応用化学専攻¹、神戸大院・工²、神戸大膜先端³

カルバゾマイシンEおよびFは、1986年に丸茂らによって 単離された全置換ベンゼンをもつカルバゾールである。約40 年前に単離された比較的小さい分子にもかかわらず、カルバ ゾマイシンFの全合成は一例も報告されていない。また、一 例のみ報告されているカルバゾマイシンEの全合成では、す

べての置換基が異なる全置換ベンゼンを構築するために多段階を要していた。当研究室では、芳香族ハロゲン化物を塩化亜鉛ジアミン錯体共存下で脱プロトン的にリチオ化して発生させた不安定有機リチウムを直ちに捕捉して安定化する in situ トランスメタル化と呼ばれる手法と、ベンザインを経由する置換カルバゾール合成法を用いて、ホルミル基を持たないカルバゾマイシンAを5段階かつグラムスケールで全合成している[1]。今回、この手法の一般性拡大を目的として、カルバゾマイシンEおよびFの全合成に着手した。

ベンザインを経由したカルバゾールの構築とホルミル化は円滑に進行し、目的のカルバゾールを収率 81% で得た。しかし、その後の官能基変換ではホルミル基に由来する副反応が問題となった。そこで、さらに検討を実施したところ、最終的にカルバゾマイシンFの世界初の全合成を 11 段階で達成し、さらに、7 段階でカルバゾマイシンEも全合成した。

[1] Feng, Y.; Yukioka, T.; Matsuyama, M.; Mori, A.; Okano, K. Org. Lett. 2023, 25, 3013.

B29 Control of Reflection Colors of Silicon Nanoparticle Monolayer

Jialu Song, Hiroshi Sugimoto, Minoru Fujii Graduate School of Engineering, Electrical and Electronic Engineering Department

Structural color is generated by interference, diffraction and scattering of light in periodic structures, which do not fade as long as the structure is preserved. Silicon(Si) nanoparticles exhibit bright scattering colors due to the Mie resonances. Herein, we focus on color tuning of a silicon nanoparticle layer by the Fabry–Pérot mode. As shown in Figure 1, by changing the silicon dioxide(SiO₂) spacer thickness between a Si nanoparticle monolayer and a Si substrate, we try to control the reflection colors by the coupling of Mie resonances with Fabry–Pérot modes.

We used colloidal solution of size-purified silicon nanoparticles (100-180 nm in diameters) developed in our group. The monolayers of homogeneously distributed silicon nanoparticles were prepared on the SiO₂/Si substrate with different SiO₂ spacer thicknesses from 0 to 200 nm. In the poster, we evaluate the color variation of the fabricated structures and discuss the mechanism of the color control by comparing the results with the electromagnetic simulations.

Figure 1. Schematic of Si nanoparticle monolayer on Si substrate with SiO₂ spacer. Mie resonance in monolayer couple with Fabry–Pérot modes. B30 イミダゾリルマグネシウムの立体制御型ハロゲンダンス

西本 颯¹、井上拳悟²、岡野健太郎²、森 敦紀^{2,3} ¹工学研究科 博士前期課程 応用化学専攻、²神戸大院・工、³神戸大膜セ

医薬や生物活性物質に含まれる多置換イミダ ゾールの一般的合成法が求められている。今回、 ブロモ基を転位させるハロゲンダンスについて、 熱的な活性化と添加剤による活性化を用いてブ ロモ基の転位選択性をスイッチングし、構造異性 体の関係にある3種類の多置換イミダゾールを選 択的に合成した。

脱プロトン的リチオ化を経て発生した高反応性イミダゾリルリチウムは-78 °C で直ちにハロゲンダ ンスを起こすため、それぞれの有機リチウムは有機亜鉛として安定化させる必要があり、導入できる官 能基が限定されていた[1]。本研究では、有機リチウムと有機亜鉛の中間の反応性を示し、幅広い求電子 剤の導入が期待されるイミダゾリルマグネシウムのハロゲンダンスに着目した。反応温度を検討した結 果、脱プロトン的に発生したイミダゾリルマグネシウム1は-20 °C でも安定であり、求電子剤との反応 にそのまま利用できた。また、イミダゾリルマグネシウム1を熱的な活性化と添加剤による活性化によ り、イミダゾリルマグネシウム2および3にそれぞれ異性化させ、幅広い求電子剤との反応に利用した。 [1] Inoue, K.; Feng, Y.; Mori, A.; Okano, K. *Chem. Eur. J.* 2021, *27*, 10267.

B31

Ni⁰(cod)(dq)を触媒前駆体に用いる

チオフェン類のカップリング反応

野田直希¹、山岡勢波²、荻 右京²、岡野健太郎²、森 敦紀^{2,3} 工学研究科 博士前期課程 応用化学専攻¹、神戸大院・工²、神戸大膜先端³

Ni(cod)(dq)(1)(COD: 1,5-cycloctadiene; DQ: duroquinone)は空気中で安定に取り扱うことができる0価ニ ッケル錯体である。¹この錯体の配位子交換反応について検討したところ、高温でPPh3やN-ヘテロ環状 カルベン配位子のIPrと配位子交換が進行することが明らかになった。また、発生させた0価の錯体は チオフェン類のクロスカップリング反応に高い触媒活性を示した。このようなチオフェン類のクロスカ ップリング反応には2価ニッケル錯体が触媒として用いられるが、加えた触媒と同じ量 だけ副生成物が生じる。本研究では、安定な0価ニッケル錯体のNi(cod)(dq)を触媒前駆 体に用いることで、副反応を大幅に抑制してオリゴチオフェンの合成を達成した。さら に本触媒はポリチオフェン合成にも利用でき、高度に位置規則性が制御されたポリ(3-Ni(cod)(dq) イキシルチオフェン)の合成を達成した。

Tran, V. T.; Li, Z.-Q.; Apolinar, O.; Derosa, J.; Joannou, M. V.; Wisniewski, S. R.; Eastgate, M. D.; Engle, K. M. Angew. Chem. Int. Ed. 2020, 59, 7409.

MEG II 実験 DLC-RPC の加速劣化試験

○<u>高橋真斗</u>¹、大谷航²、大矢淳史³、越智敦彦⁴、鈴木大夢⁴、潘晟²、山本健介³、李維遠³ ¹理学研究科 博士後期課程 物理学専攻、²東京大・素セ、³東京大院・理、⁴神戸大院・理、

MEG II 実験は、スイスにあるポール・シェラー研究所で行われている $\mu \rightarrow e\gamma$ 崩壊探索実験である。 $\mu \rightarrow e\gamma$ 崩壊は、現在の素粒子物理学を記述する理論体系である標準模型では厳密に禁止されている一方 で、標準模型を超える新物理では観測可能な崩壊分岐比を示しており、発見することが出来れば新物理 の確実な証拠となる。 $\mu \rightarrow e\gamma$ 崩壊探索における主要な背景事象は偶発的背景事象であり、異なる親粒子 から生成される背景陽電子と背景ガンマ線が信号事象と似たような運動学的特徴を持つ事象である。 我々は特に背景ガンマ線を積極的に同定するための検出器として、Diamond-Like Carbon を高抵抗電極に 使用した Resistive Plate Chamber (DLC-RPC)の開発を行っ

本研究では、DLC-RPCの放射線耐性を評価するために 加速劣化試験を実施した。走査型光電子分析装置を使用し て放射線照射後の電極を分析することで、図1に示すよう に電極表面へのフッ素の堆積を確認、その堆積物によって 本検出器性能の劣化が生じていることが分かった。本ポス ター発表ではその試験結果の詳細について報告する。

B33

地質温度計を用いた貫入火成岩による被熱異常の検討

小林唯乃1、山本由弦2

1理学研究科 博士前期課程 惑星学専攻、2神戸大・理

地質温度計とは、温度・時間に依存した物質の不可逆的な変化を利用して、岩石の最高被熱温度を推定 する方法である。断層の摩擦発熱や火成岩の貫入による短時間の被熱温度を測定できれば、地震時の断 層運動像や火成岩の貫入温度・速度を決定できる。しかし従来の地質温度計は、地質年代スケール(~ 100万年)を対象としており、短時間被熱には正しく適応できる保証がない。本研究では、新たな被熱 温度計の候補としてロック・エバル分析に注目し、短時間の温度上昇が期待できる小規模貫入火成岩(幅 約1.5m)周辺の堆積岩試料から被熱温度分布を検討した。従来の地質温度計であるビトリナイト反射

率とラマン分光法も合わせて比較検討した。その結 果、貫入火成岩に近いほどロック・エバル分析から得 られる炭化水素・炭素量(S2、S4CO2)が減少し、最 終的にほぼ消失することを示した。ビトリナイト反射 率とラマン分光法から得られる最高被熱温度も上昇 した(図1)。いずれも短時間の被熱を反映している が、火成岩近傍の温度が400℃以上に到達することを 考慮すると、従来の手法は過小評価となる。今後、ロ ック・エバル分析からの温度換算を行う予定である。

アミンを包接したシリカクラスレート中のラジカル挙動

磯谷舟佑¹、玉井伸幸²、谷篤史²

1人間発達環境学研究科 博士後期課程 人間学専攻、2神戸大院・人間発達環境

シリカクラスレートは、二酸化ケイ素(SiO₂)がホストとしてかご状構造を形成し、かごの中のガス 分子をゲスト分子として包接する化合物である.千葉石はその一種であり、千葉県の房総半島の堆積岩 層から発見され、メタン、エタン、プロペンやイソブタンといった炭化水素ガスを包接する鉱物である [1].この産地の千葉石は堆積岩層の形成後に生成したと考えられているが、正確な生成年代については 分かっていない.天然の千葉石には tert-ブチルラジカルなどの有機ラジカル種が残存することが示され ており、私たちはこれらの有機ラジカルを用いて千葉石の年代測定を試みたところ、ラジカル種とゲス ト分子間の水素引抜反応が示唆された[2].ESR 年代測定に必要な総被曝線量の評価には千葉石構造での ラジカル種の挙動を調べる必要があり、そのためには組成を制御した千葉石が必要となる.そこでシリ カクラスレート中の有機ラジカルの熱安定性を議論するために一種類の炭化水素ガスを入れたシリカ クラスレートを合成することを試みたが、炭化水素ガスが水にあまり溶解しないため困難であった.本 研究では、イソプロピルアミンを包接した千葉石と同様の結晶構造を持つシリカクラスレートを合成し、 γ線照射によりできたラジカル種の温度変化による挙動を調べた.合成試料から水素原子とイソプロピ ルアミン由来のラジカル種が観察され、水素原子は一次反応で減少し、ラジカル種は温度によってスペ クトルが変化することが分かった.

[1] K. Momma et al., (2011); [2] Yokoyama et al., (2023)

C01

誘電分光法・赤外分光法を用いた深共晶溶媒の不均質性

粟野裕斗¹、Lou Serafin M. Lozada²、富永圭介^{2,3} Pratik Sen⁴

理学研究科 博士前期課程 化学専攻¹、神戸大院・理² 神戸大・分子フォト³、Department of Chemistry, Indian Institute of Technology, Kanpur⁴

深共晶溶媒 (Deep Eutectic Solvents: DESs)とは、2 種類以上の固体を室温で混合することによって、 融点の降下により液体となる混合物を指す。先行研究では、時間分解蛍光分光法等により DES 内に不 均質性の存在が確認されており[1]、本研究では誘電分光法を用い、緩和時間の広がりから動的な不均 質性の考察を行った。サンプルとして、ラウリン酸とメントールをモル比 1:2 で混合した DES を使用 し、ベクトルネットワークアナライザと THz 時間領域分光装置を用いて、sub-GHz から THz 領域にお ける周波数依存の複素誘電率を測定し、Cole-Cole 式: $q(v) = \Delta a/\{1+(i2\pi v t)^{\rho}\}+\epsilon_{\omega}$ を用いてフィッティング を行った。ここで、分子が単一の時定数で表される運動を行うとき $\beta=1$ となるが、緩和時間に不均一 な広がり、つまり動的な不均質性を持つとき $\beta<1$ となる。1 GHz 付近の虚部に $\beta\sim0.43$ の幅広いピーク を観測し、温度上昇に伴って β が上昇した。また、DES 中におけるヒドロキシ基周辺の溶媒環境を調 べるため、FTIR 測定を行った。2400 cm⁻¹ ~ 2800 cm⁻¹の範囲において、ラウリン酸単体と同じ形状の OH 伸縮振動バンドを示し、ラウリン酸は DES 中においても主に二量体として存在していることが分 かった。

[1] N.Subba, et al., J. Phys. Chem. B, 123 9212-9221 (2019).

Co2 有機溶媒中の 9-アリールカルバゾールが示す 分子内電荷移動状態への直接遷移に対する光化学的研究

高本和也¹、植野嘉文²、太田薫³、林倫年⁴、秋本誠志²、松原亮介²、富永圭介^{2,3}

¹理学研究科 博士後期課程 化学専攻、²神戸大院・理、 ³神戸大・分子フォトサイエンス研究センター、⁴国立台湾大・凝態科学研究中心

電荷移動は基礎的な過程の1つとして挙げられ、多くの反応に関与するが、 その特性は周囲の環境に強く依存し、非常に複雑な反応機構に支配されるた め、その分子論的解釈が求められる。3,6-Bis(dimethylamino)-9-(4-cyanophenyl) carbazole(BANCC)は電子供与体と受容体で構成され(図 1)、光励起によ って分子内で電荷移動が起こると考えられている[1]。本研究では吸収や蛍光 といった分光学的手法に加え、溶媒効果を導入した量子化学計算を有機溶媒 中における BANCC に適用し、溶媒の極性を変えることにより、光化学的観 点からこの分子内電荷移動の反応機構解明を検討した。

以上の結果を比較することで、BANCC が光励起によって分子内電荷移動状態へ直接遷移することが 明らかとなった。この他にも BANCC は注目すべき特性を示し、発表では観測された溶媒依存性や、実 験及び計算結果の比較についても詳細に議論する。

[1] R. Matsubara et al, J. Org. Chem., 84, 5535 (2019)

Соз

抗腫瘍性メイタンシンの簡素化アナログ合成

内田朋実、藤本まゆか、久世雅樹

農学研究科 博士前期課程 生命機能科学専攻

メイタンシンは抗腫瘍活性物質であり、その全合成が過去に多く報告されている。本研究では、活性を保持したままでのメイタンシンの構造の簡略化を目的とし、従来よりも簡便な全合成の達成を目指す。

メイタンシンはチューブリンに結合して抗腫瘍活性を示す。両者が結合した複 合体のX線結晶構造が報告されており、本研究では結合部位の構造に着目した。 メイタンシンのジエニル構造とメトキシ基は活性発現に影響しないと推定でき、 簡素化してもよいと考えた。この部位は芳香環と非共役であり、また立体選択的 な合成においても難所の一つとなりうる。そこで、この部位を単純なメチレン鎖

へと置換すれば、抗腫瘍活性を保持した簡素化アナログが合成できると考えた。報告されている全合成 ルートを利用し、4つのフラグメントから簡素化アナログを合成することにした。まず2つのフラグメ ント(East,West)の合成に着手した。現在はそれぞれを North,South フラグメントへと連結させるべく、 検討を進めている。

Со4

幾何学的フラストレーション系 NdMgIn の新奇物性

大西昂¹、松岡英一²、菅原仁²、太田仁³ ¹理学研究科 博士後期課程 物理学専攻、²神戸大院・理、³神戸大・分子フォトセ

幾何学的フラストレーションを有する希土類化合物は、磁気秩序をもたらす RKKY 相互作用と無秩序 化を促す近藤効果の競合に、フラストレーションが影響を及ぼすことで、スピンアイスや量子スピン液 体などのエキゾチックな磁性を示すと期待されている。例として、CePdAl における 2/3 の Ce のみが寄 与する反強磁性秩序[1]や、HoAgGe におけるスピンアイス状態[2]などが挙げられる。我々は、このよ うなエキゾチックな磁性を探索することを目的に、上記の化合物と同じ結晶構造を持つ新しい化合物 RMgIn(R:希土類)の系統的な物性解明を推進している。これまでに、CeMgIn が 3 つの逐次反強磁性転 移を示すことを明らかにしている。本研究では NdMgIn の多結晶試料を作製し、その基礎物性を調べた。 右図に、電気抵抗率ρと比熱 *C* の温度依存性を示す。 ρ は T_{N1} = 11.7 K で急減し、 T_{N2} = 8.3 K でさらに不

連続な減少を示す。また C も T_{N1} と T_{N2} でピークを示し、磁化率(図 なし)もこれらの温度で極大を示すことから、 T_{N1} と T_{N2} で反強磁性転移が生じたと考えられる。さらにpは 18 K で極小(内挿図に示す)を とるという、Nd 化合物としては稀な近藤効果的ふるまいを示す。発表では、逐次相転移の起源や近藤効果的ふるまいに対する、フラストレーションの影響について議論する。

[1] A. Dönni et al., J. Phys. Condens. Matter 8, 11213 (1996).
 [2] N. Li et al., Phys. Rev. B 106, 011416 (2022).

C05

Ce 系化合物における反強磁性構造由来の

異常ホール効果の検証

田中裕斗1、小手川恒2、菅原仁2、藤秀樹2

¹理学研究科 博士前期課程 物理学専攻、²神戸大院・理

以前は異常ホール効果は試料の磁化に応じて発生すると考えられ、特に強磁性体において発現することが確認されてきた。しかし近年、異常ホール効果はベリー曲率に由来する現象であることがわかってきた。それにより、反強磁性体においても磁気構造の既約表現が強磁性体と同じときに、異常ホール効果の発現が許されることが明らかになってきた。この反強磁性由来の異常ホール効果を発現する代表例としてMn₃Snがあり[1]、この物質は Mn 原子あたりで数ミリμ_Bの自発磁化を持ち、一般的な強磁性体と比べてかなり小さい値となっているにも関わらず、大きなホール伝導度を持つことが確認されたことで注目を集めた。また最近の例として NbMnP についても反強磁性由来の異常ホール効果の発現が確認された。[2]

これまで述べた物質はともに d 電子系である。一方で Ce などの f 電子系において、どの程度の大き さで異常ホール効果が生じるのか興味が持たれているが、今のところ反強磁性体由来の異常ホール効果 を生じるような f 電子系の物質はほぼ報告されていない。そこで今回は Ce 系磁性体で反強磁性構造(厳 密には傾角反強磁性体)の既約表現がMn₃Snや NbMnP 同様に、異常ホール効果の発現を許す物質に着 目し、単結晶作成及びホール効果測定を行った。発表ではその結果について説明する。

- [1] Nakatsuji, S. et al. Nature 527, 212 (2015).
- [2] Kotegawa, H. et al. arXiv (2023)

Co6 前立腺癌細胞株のプロテアソーム阻害剤に対する 薬剤耐性における Polo like kinase の役割

植原美遊¹、重村克巳²、武田駿也²、福田伊津子³、白井康仁³、上田修司³ ¹農学研究科 博士前期課程 生命機能科学専攻、²神戸大・医、³神戸大・農

前立腺癌は日本の男性癌患者の中で最も多く、今後も罹患者数の増加が見込まれる。前立腺癌の治療 で薬剤耐性の獲得は深刻な問題であり、薬剤耐性のメカニズム解明と新たな治療法の開発が求められて いる。我々は、筋芽細胞株 L6 細胞において Polo-like kinase 2 (PLK2)が小胞体ストレス誘発性アポトー シスを抑制することを明らかにした。この知見を基に、本研究では、PLK2 が前立腺癌細胞のプロテア ソーム系分子標的治療薬の薬剤耐性に関与している可能性に着目し、PLK をターゲットにした新たな治 療法の検討を行った。

前立腺癌細胞株(LNCaP、DU145、PC-3 細胞)に多発性骨髄腫で使用されているプロテアソーム阻害剤(Bortezomib)を処理した結果、PLK2の発現誘導が確認された。Bortezomib 添加した前立腺癌細胞では、PARPを指標としたアポトーシスシグナルが活性化されるが、Bortezomib と PLK 阻害剤

(BI2536)の併用により、更にアポトーシスの強い促進が認められた。この効果は、PLK2 特異的阻害剤(ON1231320)の併用でも確認された。以上の結果により、前立腺癌細胞株に対する、抗癌剤と PLK 阻害剤を併用することで薬剤耐性を改善する可能性が示唆された。現在、PLK の基質を同定する とともに、アポトーシスに対する異なる PLK アイソフォームの影響を検討している。

C07

酸化還元活性なアゾ配位子を有する Ni(III)錯体の

原子価不安定性

野口拓海¹、宮脇敦大¹、持田智行¹、櫻井敬博²、大久保晋³、太田仁³、高橋一志¹ ¹理学研究科 博士前期課程 化学専攻、²研究基盤セ、³分子フォト

温度や光などの外部刺激による金属錯体のスイッチング現象として、 中心金属と配位子間で電子移動して錯体のスピン状態が変化する原子価 互変異性 (VT)が知られている。最近、酸化還元活性な配位子[1]を有す る Ni(III)錯体 1 で VT を示唆する温度上昇に伴う磁化率の上昇が見られ たが、そのメカニズムは明らかになっていない。そこで、合成直後の錯 体 (1-pr)、350 K で 4 時間程度保持した錯体 (1-h)、5 か月間室温で保管 した錯体 (1-ag)の磁化率と XPS 測定を行った。磁化率の値が Ni(III)の 低スピン状態を示唆した 1-pr は、1-h では少し上昇し、1-ag では Ni(II) に相当する値であった。また、1-ag の XPS スペクトルは Ni(II)錯体とほ ぼ一致したことから、磁化率の上昇に伴い配位子から Ni(III)へ電子移動 が起きていることが示唆された。発表では、置換体の結晶構造と性質の 比較を含めて、この原子価不安定性の原因について報告する。 [1] K. Takahashi *et al., Inorganics*, 10, 84 (2022).

Fig. 1. 錯体の分子構造

Fig. 2. 1-pr, 1-h, 1-ag の磁性

Co8

近藤半金属 CeRu₂Al₁₀の高圧下ホール効果測定

前谷風弥1、薦田拓也1、松岡英一2、小手川恒2、藤秀樹2、菅原仁2、

D. Bhoi³、沈晓玲³、上床美也³

1理学研究科 博士前期課程 物理学専攻、2神戸大院・理、3東大物性研究所

直方晶化合物 CeRu₂Al₁₀は Ce 化合物としては高い反強磁性転移温度(T_N~28 K)を示す近藤半金属的な物質として知られている[1]。常圧では半金属的で、加圧により半導体的な温度依存性を示す。ま

た、加圧に伴い転移温度は増大し2GPa付近で $T_N \sim 33$ Kの最大値を示す。さらに加圧すると4GPa付

近で転移が消失し電気抵抗は再び金属的な温度依存性に変化する。 本研究では Al 自己フラックス法による純良単結晶試料を使い高圧 下の電子状態を調べるため高圧下ホール抵抗率測定を行った。ホー ル抵抗率測定は直流および交流4端子法で行い、2 GPa まではピス トンシリンダー型セルを、それ以上の高圧ではキュービックアンビ ルを用いた。図1はホール抵抗率の磁場依存性である。ホール抵抗 率は加圧とともに複雑な磁場依存を示し、臨界圧力を超えた4.6 GPa では、反強磁性状態と比べ1~2桁小さな値となった。この結

果からも加圧下により電子状態が大きく変化することが明らかとなった。 [1] T. Nishioka et al., J. Phys. Soc. Jpn. 78, 123705 (2009).

C09

ナデシコ属植物の春化応答における FLC の役割

小野凌汰1、小西晴香1、八木雅史2、岡本花弥1、藤本龍1、小山竜平1、宇野雄一1

1農学研究科 資源生命科学専攻、2農研機構 野菜花き研究部門

カーネーション(Dianthus caryophyllus)の栽培品種は一般的に四季咲き性を有しているが、同じナデ シコ属の野生種 Dianthus capitatus は開花に低温が必要である.これら近縁種の比較により、ナデシコ属 の開花制御機構の理解が進むと考えられる.シロイヌナズナでは、FRIGIDA (FRI)による Flowering Locus C (FLC)の転写活性化が開花を抑制しており、低温期間にヒストン修飾を受けた FLCの発現が低下す ることで開花が誘導される.本研究ではナデシコ属植物の春化制御機構の解明を目的として、FLCを含 む複数の候補因子を対象に、シロイヌナズナ過剰発現体の形質調査、低温/非低温下の発現解析、およ び栽培種×野生種 F1・F2集団のジェノタイピングを行った.配列保存性から Dca42306.1/Dca45290.1を カーネーションの FLC オルソログ (DcFLCIa,1b)と同定した.DcFLC 過剰発現体は、野生型と比較し て抽苔が遅延すること、発現強度と抽苔遅延の程度がほぼ一致することが明らかとなった。転写量を調 べた結果、栽培種では常に低レベルであったのに対し、野生種では低温処理特異的な発現低下が確認さ れた.また野生種では H3K27me3 の蓄積量が低温処理後 15 週目以降に増加したことから、ヒストン修 飾が FLC の発現低下を制御すると考えられた.ジェノタイピングの結果、野生種と栽培種の開花様式の 違いと FLC や FRI のコード領域の配列特異性との間に関連性は見られず、FLC の転写制御が関与して いると考えられた.現在、野生種と栽培種の DcFLCIa,1b のプロモーター解析を進めており、低温に対 する 15 週目以前の応答がプロモーター活性に起因するかを特定したいと考えている.

CRISPR/Cas9 によるレタスアラントイナーゼ欠損変異

体の作出と生理機能の解析

峰地楓子¹,斎藤安希子¹,野尻増俊²,浅田隆之²,西田敬二³,藤倉潮³,中野伸一^{1,4},小山 竜平¹,宇野雄一¹

¹農学研究科 資源生命科学専攻,²株)カネカ アグリバイオ&サプリメント研究所,³先端バイ オ工学研究センター,⁴兵庫県農林水産技術総合センター

レタス(Lactuca sativa)は世界中の国で消費される重要な葉菜類であるが、主産地では異常気象により安定供給が妨げられている.このような乾燥ストレスへの抵抗性誘導剤として、アラントイン(5-ウレイドヒダントイン)が利用されつつある.アラントインは、植物体内ではプリン代謝の中間体であり窒素輸送形態として働く.またヒトやマウスにおいて皮膚の炎症抑制や抗がん剤副作用の緩和が認められたことから化粧品や医薬品に利用されている.我々はこれまでに外生アラントイン処理がレタスの乾燥耐性や洪水耐性に効果を示すことを明らかにした.そこで本研究では内生アラントインを高レベルで蓄積するレタスをゲノム編集により作出し、ストレス耐性と付加価値の向上を試みた.レタスのアラントイン分解酵素をコードする LsALN を CRISPR/Cas9 により機能欠失させた変異体を作出し、7日目の実生のアラントイン含量を測定したところ、WT に比べて約160 倍の蓄積が確認された.また、RNA-seqにより発現変動遺伝子を調査しGO 解析を行ったところ、オーキシン応答や光合成関連などの経路に関わる遺伝子群が上方制御されており、側根の発達等が耐性獲得の一因であると考えられた.

C11

超伝導物質を熱スイッチに用いた断熱消磁冷凍機の試作Ⅲ

薦田拓也¹、中村優介²、菅原仁²、松岡英一²

1理学研究科 博士後期課程 物理学専攻、2神戸大院・理

異常磁性や非従来型超伝導などの強相関電子系の研究では 極低温での実験が不可欠なものとなっている。これまで私たち は簡便に 100 mK 程度の最低温度が得られる断熱消磁冷凍機 (Adiabatic Demagnetization Refrigerator: ADR)に着目し、³He 冷凍 機と超伝導熱スイッチを組み合わせた新しいタイプの ADR の 開発を行ってきた。以前の研究会ではトップローディング型 ³He 冷凍機と組み合わせた装置の試作について発表してきた が、³He を液化する機構に問題があったため設計通りの冷却が できなかった。そこで本研究ではトップローティング型を諦 め、従来の³He 冷凍機と組み合わせて試作を行なった。昨年度 の研究会では、トップローティング型の ADR に超伝導物質 Nb4NiSi(*T*c~8.3 K, *H*c2~ 2.0 T)[1]を熱スイッチとして用いること で最低温度 117 mK を実現した結果を報告した。本研究会では、 さらに 74 mK の最低温度が得られたので報告する。 [1] G. Ryu *et al.*, Phys. Rev. B **84**, 224518 (2011).

図 断熱消磁冷却時の温度の磁場依存性。内挿図は0.05 T以下の低磁場領域を示している。主図の矢印はそれぞれの物質の*H*_{c1}を、内装図の矢印は*H*_{c1}を示す。

2次元鉄(II)配位高分子のゲスト脱離に伴う

構造と磁性の変化

石野圭一郎¹、櫻井敬博²、太田仁³、佐藤寛泰⁴、高橋一志¹

¹理学研究科 博士前期課程 化学専攻、²神戸大研究基盤セ、³神戸大分子フォト、⁴㈱リガク

多孔性配位高分子は細孔を有するため、ゲスト分子の吸脱着や触媒としての機 能性を持つため注目されている。本研究では、新規架橋配位子 L^{OMe} (Fig. 1)を合 成し、L^{OMe}を用いた配位高分子の合成を検討したところ、鉄(II)錯体を単結晶と して単離することができた。配位子L^{OMe}とその鉄(II)錯体の単結晶X線構造解 Fig.1L^{OMe}の分子構造 析、磁化測定の結果を報告する。

L^{OMe}は2.5-ジブロモ-1.4-ジメトキシベンゼンと4-ピリジンボロン酸の鈴木・ 宮浦カップリング反応により得た。L^{OMe}のジクロロメタン溶液と [Fe(NCS)₂(py)₄]のメタノール溶液を拡散させることで黄色ブロック状結晶として [Fe(NCS)₂(L^{OMe})₂]・2CH₂Cl₂(1)を得た。錯体1の構造解析の結果、2次元グリット 構造は c-a 方向へ積層しており、a 軸方向に1次元チャネルの存在が確認された。 結晶溶媒脱離後の錯体2の構造解析の結果、2次元グリッド構造は保持しているが、 鉄(II)イオンへの配位構造が変化しており、それに伴う磁気挙動の変化が見られた。 発表では構造と磁性の変化について議論する。

Fig. 21の結晶構造

ÓΜε

C13

クロロフィル c の電子励起状態に関する考察

水村景太¹、鞆達也²、秋本誠志^{1,3}

¹理学研究科 博士前期課程 化学専攻、²東京理科大・教養教育、³神戸大・先端バイオ

昨年、光合成色素であるクロロフィル(Chl) c を含む集光性タンパク質(FCP)の詳細な構造が明らか になった[1]。ChlcやChlaなどの配置が特定され、エネルギー移動経路について議論が進んでいくとこ ろである。しかし、Chl c は第一電子励起状態が縮退している(図 la) [2]、または縮退していない(図

1b) [3]といった二通りの解釈があるため、エネルギー移 動に関与する遷移双極子モーメントの方向が特定され ておらず、エネルギー移動経路についての詳細が議論で きない。本研究では蛍光異方性測定によって Chlc の電子 励起状態を考察した。結果より、第一電子励起状態は縮退 しており、エネルギー移動に関与する遷移双極子モーメ ントは図 la のように二方向あると考えた。

- [1] R. Nagao et al., Nature Communications, 13, 1764 (2022).
- [2] R. E. Blankenship, Molecular Mechanism of Photosynthesis 3rd Edition, Blackwell Science (2021).
- [3] 三室ら編、クロロフィル、裳華房(2011)。

図1 Chl c の分子構造と、予想されている二通りの 遷移双極子モーメントの方向(矢印)[2.3]。

C14 低波数領域の振動分光法と量子化学計算による ポリトリメチレンテレフタレートのメチレン基の数に 起因する結晶構造への影響について

丸山 陽大、佐藤 春実

人間発達環境学研究科 博士前期課程 人間環境学専攻

ポリトリメチレンテレフタレート (PTT:Fig.1) は、テレフタル酸と 1,3 プロパン ジオールとを重縮合させて得られるバイオベースプラスチックである。本研究で は低波数ラマン・テラヘルツ分光法と量子化学計算を用いて PTT の CH₂ 基の数 Fig.1: Chemical structure of PTT と結晶構造の関係を、ポリエチレンテレフタレート(PET)やポリブチレンテレフタレート(PBT)と比較し 調べることを目的とした。30cm⁻¹~150cm⁻¹における PTT のラマンスペクトルを PET・PBT と比較した図 を Fig.2 に示す。PTT には室温で 58cm⁻¹、70cm⁻¹、90cm⁻¹、114cm⁻¹にピークが現れており、PET・PBT と

は異なっている。この違いは結晶構造中の CH₂ 基の数に起因していると考えられ る。CH₂ 基が偶数である PET・PBT は繊維軸に対して方向性が同じ繰り返し単位 が並び続ける結晶構造であるのに対し、奇数である PTT は分子鎖が Z 字に繰り返 し折れ曲がる結晶構造を形成しており、低波数領域の振動分光法はこの結晶構造 を敏感に捉えていると考えられる。また、量子化学計算により PTT 特有のピーク は主に繊維軸に沿った CH₂ 基の振動を反映しており、CH₂ 基の数の違いによる 分子鎖の柔軟性や偶奇性による構造上の違いを反映している可能性が高い。

Fig.2:Raman spectra of PTT, PET and PBT

C15 超伝導フラクタルナノ複合体の超伝導特性に及ぼす 界面構造と MgB2含有量の効果

中明育¹, 櫻井敬博², 太田仁³, 大井修一⁴, 立木実⁴, 有沢俊一⁴, 幾原雄一⁵, 近藤隼⁵, 内野隆司⁶

理学研究科 博士前期課程 化学専攻¹, 神戸大・研究基盤センター 極低温部門², 神戸大・分子フォトサイエンス研究センター³, NIMS⁴, 東京大・工⁵, 神戸大・理⁶

近年, 我々の研究グループは, 超伝導体 MgB2 が常伝導相 Mg/MgO 中にフラクタル的に分散したナノ複合体が, MgB2 の体積分率が 20 %~30 %程度であっても超伝導近接効果によりバルク的超伝導を示すことを報告した [1]。そこで,本研究では, 超伝導近接効果に大きく影響を及ぼす界面構造を高分解能透過電

子顕微鏡により観察した。その結果,結晶の方位に関わらず,原子レベルでクリーンな MgO/MgB2 界面が,MgB2側の界面の末端を B 原子として形成されていることが分かった(図 1)。また,ナノ複合体中の MgB2 量の増加による超伝導特性の変化を調べたところ,MgB2 量の増加に伴って超伝導特性が向上することが分かった。以上の結果は,MgB2 の濃度とそのフラクタル分布が超伝導近接効果による位相コヒーレンスの形成に影響を及ぼすことを示している。

T. Uchino, N. Teramachi *et al.*, *Phys. Rev. B* 101, 035146 (2020);
 N. Teramachi, I. Nakaaki *et al.*, *Phys. Rev. B* 108, 155146 (2023)

図 1. 環状明視野走査透過 顕微鏡 (ABF-STEM) 像

スピンクロスオーバー鉄(III)錯体のハロゲン置換効果

広田 舞¹、高橋 一志¹、櫻井 敬博²、太田 仁³

1理学研究科 博士前期課程 化学専攻、2神戸大・研究基盤セ、3神戸大・分子フォト

スピンクロスオーバー (SCO) とは、温度、光、圧力などの外部刺激により、遷移金属錯体のスピン状態が高スピンと低スピンの間を変化する現象である。我々は 2,2'-アゾビスフェノレートの Fe(III)錯体 1-H (図 1)がこれまでに報告例の少ないアニオン性の SCO 錯体であることを報告した[1]。本研究では、電子求引性基の電子的、立体的な効果が SCO 挙動にどのような影響を与えるかを調べるために、配位子にフッ素、塩素、臭素を導入した錯体 1-F、1-Cl、1-Br(図 1)を合成し、磁性や構造を比較した。磁化測定の結果を図 2 に示す。1-F はほぼ高スピンからなだらかな可逆転移を示すが、完全な SCO ではなかった。一方、1-Cl は室温ではほぼ低スピンであり、昇温すると 330 K 付近で急激な転移を示した。続けて降温昇温するとなだらかな転移に変化した。1-Br は、すべての温度領域でほぼ高スピンであることがわかった。これらの磁気挙動の違いについて、結晶構造の比較から議論する。

[1] K. Takahashi et al., Chem. Eur. J. 2016, 22, 1253.

C17

圧力誘起超伝導体 CeSb₂の NQR による研究

中西 青空、小手川 恒、藤 秀樹 理学研究科 物理学専攻 博士前期課程、 神戸大院・理

2023 年一部の反強磁性体は、外部から圧力をかけることで超伝導が新たに発現したり、超伝導転移温 度が上昇することがある。CeSb₂ は圧力をかけることで超伝導体になる物質であることが報告された [1]。本研究では、CeSb₂ の単結晶試料を作製し、先行研究のデータと比較して正しい試料が作れてい るか確認したのちに、圧力をかけて超伝導が起きるかを確かめる前段階として NQR 測定を行い常圧の 反強磁性状態を調べた。その結果、20K の常磁性状態では 2 つのサイトを持つ Sb のうち一つを図1 に 示すように鋭いピークとして信号を確認できた。転移温度以下で内部磁場の出現によりスペクトルが複 雑に変化することが分かった。

図1 CeSb₂の¹²¹Sb, ¹²³Sb-NQR スペクトル

3D プリンターで作る光学素子に向けた反射膜の研究

石井俊介¹、瀬川和磨¹、糸井健人²、菜嶋茂喜²、大久保晋^{1,3}、太田仁^{1,3} 理学研究科 物理学専攻 博士前期課程¹、大阪公立大院・工²、神戸大・分子フォト³

光学素子は様々な種類がある。光学素子のミラーの作成方法は主に2種類ある。1つはガラスの表面 に金蒸着を施したもの、もう1つはアルミブロックを切削し研磨し、金蒸着を施したものである。金は 導電率が高く、酸化しないので反射膜によく用いられる。パルス強磁場 ESR 装置内は空間が狭く、専用 形状の光学素子を作る必要がある。また、パルス強磁場中ではバルクの金属には渦電流が発生するので バルクの金属の導入は不可である。3D プリンターなら樹脂製の複雑な構造の造形物が作成できること に着目し、樹脂材料に形成できる反射膜の研究を行った。鏡を作るには1)金属箔を貼る、2)銀鏡反応な

ど化学反応、3)金属メッキ、4)金属蒸着、5)ミラー塗料を塗布するなどの 方法がある。樹脂との相性やパルス強磁場中を考え、ミラー塗料の膜の反 射率を調べた。今回は表面が平滑なスライドガラスにミラーコート材を塗 布し反射率の測定を行った。本研究では、一般に流通しているミラーコー ト材2種(ボーンミラー、GRANZCOAT)で作製した薄膜のテラへルツ帯の 反射率を調べた。テラへルツスペクトルからミラーコート材はいずれも 20%程度の反射率はあるものの、光学素子として使うには十分な反射率は 得られなかった。一方で、膜厚 125 nm のスパッタ膜は 0.4 THz 以下で 50% 以上の反射率を有していることが分かった。

図1 ESR 測定における 放物面鏡の応用例

C19

黒リンの圧力下 THz サイクロトロン共鳴測定

 鍋田百花¹、櫻井敬博²、松岡英一³、菅原仁³、大久保晋⁴、太田仁⁴、岡村英一⁵
 理学研究科 博士前期課程 物理学専攻¹、神戸大・研究基盤セ²、神戸大院・理³、 神戸大・分子フォト⁴、徳島大院・創成⁵

黒リンは約 0.3 eV (常圧・バルク)のエネルギーギャップ を持つ半導体で、圧力を 1.5 GPa 程度かけると半導体半金属 転移を起こす[1]。転移に伴いフェルミ準位近傍で線形のエネ ルギー分散関係が生じるという理論予想[2,3]があるため圧力 下サイクロトロン共鳴 (CR)でこれを確認する。測定では転 移後の CR 信号の観測には至らなかったが常圧、1.2 GPa、1.5 GPa での測定に成功し、有効質量はそれぞれ m*=0.22mo、 m*=0.0850moと m*=0.0825moと求められた。今回求めた常 圧での有効質量は既報の常圧での有効質量 m*=0.222mo[4]と 一致している。以上より、金属状態での CR 信号の観測には 至らなかったが、圧力下での CR の測定に成功し、有効質量 が半金属転移に向かい小さくなっていることを明らかにした。

[1]K. Akiba et al., J. Phys. Soc. Jpn., 84, 073708 (2015). [2]Fei et al., Phys. Rev. B 91, 195319 (2015).
[3]P.-L. Gong et al., Phys. Rev B 93, 195434 (2016). [4]S. Narita et al., J. Phys. Soc. Jpn., 52, 3544 (1983).

量子磁性体の圧力下 THz ESR による研究

濱田優翔1、櫻井敬博2、嵯峨慎2、大久保晋3、太田仁3

理学研究科 博士前期課程 物理学専攻1、神戸大・研究基盤セ2、神戸大・分子フォトセ3

近年、磁性体の量子揺らぎに起因する新奇な物理現象の探索が盛んに行われている。特に、極低温、 高圧力、強磁場という多重極限下ではこれまでにない現象が見出されるのではないかと期待されている。 圧力下テラヘルツ電子スピン共鳴(THz ESR)は、その様な現象をミクロな視点で観測できる有用な手 法の一つである。

本研究では、量子磁性体として磁性イオンである Cu^{2+} (S = 1/2) がはしご状の格子を形成する物質 (dimethylammonium)(3,5-dimethylpyridinium)CuBr₄ という物質 (図 1 参照) に着目した。本物質は長距離

磁気秩序とスピンギャップが共存しており、モーメントの 振幅ゆらぎの励起モードである、ヒッグス振幅モードを観 測できる希有な物質である。本研究では、系に更に圧力を 印加する。先行研究によると、圧力の印加によって長距離 秩序が消失すると報告されている[1]が、その起源は明ら かではない。本研究ではその起源を圧力下 THz ESR 測定 により明らかにする。

[1] T.Hong et al., Nat. Phys. 13, 638 (2017).

図1:結晶構造.赤丸が磁性イオン.

C21

低波数領域の振動分光法による P(LLA-co-CL)共重合体

の高次構造の検討と海洋分解性の評価

畑山 昌寛、佐藤 春実

人間発達環境学研究科 博士前期期課程 人間環境学専攻

P(LLA-co-CL)共重合体(LCL;Fig1)は、L-ラクチドとカプロラクトンをモ ノマーとした共重合体で、生分解性と生体吸収性を併せ持つため、手術 用縫合糸の原料といった医療用途として注目を集めるポリマーである。 LCL は組成比を変えることによる、高次構造の変化に関する研究報告は ほとんどない。そこで本研究では、テラヘルツ分光法、低波数ラマン分光 法、広角 X 線回析法(WAXD)を用いて、LCL の高次構造および分子間相 互作用を確認した。LCL 共重合体は、ポリ L-乳酸(PLLA)もしくはポリカ プロラクトン(PCL)の割合が増えるにつれて、結晶の格子定数は大きくな るが、ピークは高波数シフトすなわち分子間相互作用の強まりという従 来とは逆の結果が得られた。この結果から LCL になることで新たな分子 間相互作用が働く可能性が示唆される。また Fig2 よりラマンイメージン グを用いて、LCL90(PLLA:PCL=10:90)の海洋分解性を評価したところ、顕 微画像およびマッピング画像の変化から、PCL よりも海洋分解性の高い ポリマーであることが確認できた。

Fig. 1 Chemical structure of LCL.

Fig.2(a)(b)Microscopic and (c)(d)Raman mapping images of LCL90 film (left: 0h, right: 24h).

シアノ系アニオンを有する有機金属柔粘性

イオン結晶の構造と熱的性質

井上亮汰1、島田壮人1、持田智行2,3

1理学研究科・博士前期課程・化学専攻、2理学研究科・化学専攻、3神戸大先端膜工学セ

近年、固体電解質等への応用の観点から、 柔粘性イオン結晶 (IPC)が注目されている。 IPC 相は球形に近い分子からなるイオン結 晶が示す固液中間相である。この相では結 晶内で分子が回転運動を起こし、分子配向 が無秩序化している。

無秩序化している。
 Fig. 1. Structural formulae of the (a) cation and (b) anions used
 当研究室ではこれまでに、種々のカチオ in this study.

ン性サンドイッチ錯体の塩が IPC 相を発現することを見出してきた。例えば[Ru(C₅H₅)(C₆H₆)]B(CN)₄ ([1]B(CN)₄)は 340 K以上の温度範囲で IPC 相を発現する¹⁾。本研究では、アニオンの体積および対称性 が IPC 相への相転移温度に与える影響を検討するため、他のシアノ系アニオンを組み合わせた一連の塩 を合成し (Fig. 1)、その熱物性および結晶構造について検討した。

1) T. Tominaga, T. Ueda, T. Mochida, Phys. Chem. Chem. Phys., 19, 4352 (2017).

C23 テラヘルツ帯 ESR 測定用ディアボロ型アンテナの

特性評価と作製

伊郷祐馬1、滝川稜人1、大道英二1、太田仁1.2

1理学研究科 博士前期課程 物理学専攻、2神戸大分子フォトセ

テラヘルツ光源を用いた電子スピン共鳴(ESR)測定は高いスペクトル分解能が得られる一方、光源 強度が低く、測定感度が低いという課題がある。本研究では電磁波の磁場成分を増強するアンテナを用 いることで感度の向上を図る。

本研究では磁場増強アンテナとしてディアボロ型アンテナ[1]に着 目した。このアンテナは2つの三角形が細い連結部でつながっている 金属製アンテナである。電磁波入射に対してアンテナに振動電流が流 れる際、アンテナが LC 共振回路として働くため、特定の周波数にお いて連結部近傍に共鳴的に増強された振動磁場が発生する。

本研究では電磁波解析シミュレーションを用いてアンテナの周波 数特性の評価を行った。また、計算結果に基づいて設計したディアボ ロ型アンテナを微細加工技術により実際に作製した。

[1] T. Grosjean et al., Nano Lett. 11, 1009 (2011).

図1:サイズの異なるディアボ ロ型アンテナに対する振動磁 場の周波数依存性

特異な磁気構造をもつ UNi₄B の微視的研究

阿部修也1、越智遙菜1、竹内涼介1、岸本恭来1、小手川恒1、播磨尚朝1、藤秀樹1、

本多史憲²、本間佳哉³、仲村愛³、清水悠晴³、李徳新³、青木大³ ¹理学研究科 物理学専攻、²九州大学 RI 統合管理センター、³東北大学金属材料研究所

UNi4B は、中性子散乱の実験から六方晶構造をもつ反強磁 性体で、図のような渦状の磁気構造をとると考えられてきた [1]。しかしながら、なぜ図のような渦状になるのかは明らか になっておらず長い間さかんに研究が行われてきたが、未だ 解明されていない。最近、結晶構造が六方晶から僅かにずれ た直方晶であることが明らかになり結晶構造と磁気構造の相 関などに再び注目が集まっている。本研究では11B 核の核磁

気共鳴(NMR)実験から、NMR スペクトル測定とスピン-スピン緩和時間測定を行うことにより、ミクロな視点から磁気構

図: UNi4B のトロイダル秩序

造の様子を確認することに挑戦した。実験では、磁場中でのスペクトル測定を行った。また、スピン-スピン緩和時間についても測定した。これらの結果をもとに物質の磁気秩序状態について議論を行う。 [1] S. Hayami, H. Kusunose and Y. Motome Phys. Rev. B **90**, 024432(2014)

C25 Model membrane arrays prepared by self-spreading of lipid bilayers in preformed polymeric lipid bilayer channels

Masako Fujii¹ and Kenichi Morigaki^{1,2}

¹Graduate School of Agricultural Science, ²Biosignal Research Center

Supported lipid bilayers (SLBs) are widely used as a model of the cell membrane. We developed a patterned SLB using polymeric lipid bilayer that can stabilize fluid lipid bilayers. We recently applied the spontaneous spreading

of lipid bilayer (i.e. self-spreading) from a condensed lipid reservoir for introducing SLBs into a preformed framework of polymeric lipid bilayer. (Figure 1) Here, we studied the self-spreading behavior by changing the channel width and lipid compositions to utilize the lipid flow for transporting biomolecules along the lipid membrane channels. We observed that multilayer lipid envelopes (lobe) were formed along the spreading SLBs. The lipid flow along the membrane channel would be utilized to transport biomolecules.

Figure 1: Scheme of self-spreading lipid bilayer in patterned polymeric lipid bilayer channels

支持脂質二分子膜に GPCR を配向性を制御して組み込む

肥塚雅人1、森垣憲一2,3、林文夫4

1農学研究科 博士前期課程 生命機能科学専攻、2神戸大・農、3神戸大・バイオシグナル研究 センター、4神戸大・理

Gタンパク質共役型受容体(GPCR)の機能解析には、GPCRの配向を制御した状態でモデル生体膜である 基板支持脂質二分子膜(SLB)に再構成することが重要である。GPCRは外部刺激に応答しシグナル伝 達を行う受容体であり、その機能が広い生命機能に関連している。そのシグナル伝達機能には生体膜内 における物性や複合体形成が関与していると考えられている。しかし生体膜は多様な成分や複雑な構造 をもつため、物性や複合体形成を調べることは困難である。そこで我々は GPCR であるロドプシン(Rh)

をペプチドナノディスク(ND)を用いて、パターン化モデル生体膜に 再構成する方法を開発した。配向を制御するために、ND中の Rhの C 末端に嵩高で可溶性の分子である抗体フラグメント(Fab')を結合 させ、Fab'が SLB 中のバルク溶液に向くように再構成した。Rh-Fab' 複合体を含む ND をパターン化モデル膜に導入したところ、脂質二 分子膜は ND から形成され、蛍光標識 Fab'分子のほとんどが可動性 を示した。この観察より Rh が優先的に C 末端をバルク溶液に向け て再構成されたことを示された。

C27

テラヘルツ時間領域分光法を用いた

汎用ポリマーの劣化評価

林誉理花、佐藤春実

人間発達環境学研究科 人間環境学専攻 博士前期課程

テラヘルツ波とは、マイクロ波から遠赤外線(100GHz~30THz)にかけての波である。テラヘルツ時間領域分光法(THz-TDS)は高い透過性と非破壊・非接触での分析が可能であり、サンプルの吸光度だけで

なく複素屈折率や複素誘電率といった物性値が一度に得られるという 利点がある。しかし、THz-TDS を用いたポリマーの劣化評価に関する 研究は少なく、今後の発展が期待される。そこで本研究は、THz-TDS から算出した複素屈折率・複素誘電率などの値を用いて、高密度ポリ エチレン(HDPE)、ポリエチレンテレフタレート(PET)、ポリプロピレ ン(PP)、ポリスチレン(PS)といった汎用ポリマーの紫外線(UV)劣化評 価を行った。右図はその中の PET サンプルにおいて、UV 劣化に伴う 誘電率の上昇を確認した結果である。赤外分光法の全反射測定を用い た結果と合わせて、THz-TDS を用いた汎用ポリマーの劣化評価の有効 性を検討する。

Fig.1 PET の UV 劣化に伴う 誘電率の経時変化

溶液試料における熱的検出 ESR 分光法の開発

小島大輝1、大道英二1、太田仁1.2

理学研究科 博士前期課程 物理学専攻1、神戸大・分子フォト2

熱的検出による電子スピン共鳴法(ESR)では、電磁波を吸収し、励起されたスピン系が基底状態に緩 和する際に格子系に放出する熱を温度計により検出する。この手法は比熱が小さくなる低温下で感度が 高く、また、検出器の感度が周波数に依存しないことから広帯域 ESR 分光に適している。我々のグルー プではこれまで熱的検出テラヘルツ ESR 分光法を開発し、固体試料に適用してきた [1]。一方、タンパ ク質や酵素では多くの場合、溶液中でのみ生体機能を示すことから生命科学の研究分野においては溶液 試料への需要が高まっている。一般に測定対象となる金属タンパク質や酵素の生体内濃度は 10-100 μM 以下であることから、溶液試料の測定では高い濃度感度が要求される。そこで本研究では、高周波領域 における溶液試料に対する熱的検出 ESR 分光法の開発を行った。

本研究では市販の RuO₂ チップ抵抗を用いて小型の温度計を作製し、テフロンセル(容積 30 µL)に TEMPOL 溶液(濃度 1 mM)とともに封入した。4.2 K の低温下で 105 GHz のミリ波を照射しながら磁 場掃引を行ったところ、ESR 共鳴条件より期待される磁場において約 5 mK 程度の温度上昇を観測する ことに成功した。また、周波数を変えて測定を行ったところ、温度上昇を示す磁場と周波数の間には良 い直線関係がされたことから、観測された信号が ESR 吸収によるものであることがわかる。本発表では 作製した熱的検出 ESR 分光装置ならびに得られた実験結果の詳細について報告する。

[1] H. Takahashi et al., Rev. Sci. Instrum. 92, 083901 (2021).

C29 シロイヌナズナの耐塩性における雑種強勢メカニズム

の解明

神矢良樹¹、Hasan Mehraj²、安田剛志²、藤本龍²

1農学研究科 博士前期課程 資源生命科学専攻、2神戸大院・農

雑種強勢とは、特定の組み合わせの親を交配して得られた雑種第一代(F₁)が両親よりも優れた形質(収量の増加やストレス耐性の向上など)を示す現象のことである。農業上有用な現象であるが、そのメカニズムは未解明である。また、ストレス耐性における雑種強勢の研究は収量性における雑種強勢の研究よりも遅れている。しかし、世界人口増加や気候変動による食糧問題の解決には、環境ストレスに強い作物の開発が必要不可欠である。本研究では、未だ検証されていないシロイヌナズナの塩ストレス耐性における雑種強勢に着目し、ストレス耐性の観点から雑種強勢のメカニズムを解明することを目的とした。電解質漏出度による耐塩性評価の結果、植物サイズの増加が確認されている F₁ (C24×Col-0) は両親よりも高い耐塩性を示し、塩ストレス耐性においても雑種強勢を発揮することが示唆された。

С30

電子供与基を有するアゾ配位子からなる Ni 錯体の性質

笠崎 泰世1、櫻井 敬博2、太田 仁3、高橋 一志4

¹理学研究科 博士前期課程 化学専攻、 ²神戸大・研究基盤セ、³神戸大・分子フォト、⁴神戸大院・理

原子価互変異性(VT)とは、熱や光、圧力などの外部刺激により、金属 錯体の配位子と中心金属との間で電子が移動するスイッチング現象で あり、メモリーやセンサーへの応用が期待されている。最近、アゾ配位 子を有する Ni(III)錯体 1 で、VT を示唆する非可逆な磁化率の上昇が見 られた。VT を可逆にするために、さらに1電子酸化された中性 Ni 錯体 が有利であると考え、電子供与性のメトキシ基を導入した Ni(II)錯体 2 とその酸化体である中性 Ni 錯体 3 を合成し、構造と物性を評価した。 Ni(II)錯体 2 をヨウ素酸化することで、中性 Ni 錯体 3 を得た。CV 測定 を行ったところ、2 の二つ目の酸化波の酸化還元電位がヨウ素の酸化還 元電位より低く、ヨウ素によって2電子酸化されたと考えられる。磁化

3: n = 0, R = OMe

率測定では、溶媒の脱離に伴うわずかな磁化率の下降が見られたが、磁気転移は認められず VT が起こっていないことが分かった。XPS 測定を行ったところ、3 は Ni(III)であることが示唆され、中心金属が Ni(III)とすると配位子はジアニオンとラジカルアニオンであると考えられる。

C31 Nanofluidic supported model cell membrane for single

molecular analysis of membrane-bound proteins

Yu Yoshimura¹, Ryota Komatsu¹, Shin-ichi Yusa², Kenichi Morigaki³ ¹Grad. Sch. Agri., Kobe Univ., ² Department of Materials Science and Chemistry, University of Hyogo, ³Biosignal Research Center, Kobe Univ.

Biological membrane plays critical roles in the cell through interactions of proteins and lipids. However, analyzing physicochemical properties of membrane-bound proteins in complex cellular environment at the single molecular level is challenging. We have developed a nanofluidic model membrane, combining patterned polymeric/ fluid lipid bilayers and a nanometric aqueous solution

with a defined thickness (Figure1). The nanometric space was generated by binding the polymeric membrane and PDMS with silica nanoparticles having defined sizes. The thin gap suppresses background noise and enables to detect single molecules with a high signals to noise ratio. The model system offers new possibilities to investigate the interactions and functions of biological membrane.

Figure 1. Schematic of nanogap junction and separation of mixture of proteins

新しい直方晶化合物 CeIrIn2 の低温物性

赤木草太1、松岡英一2、菅原仁2、太田仁3

1理学研究科 博士前期課程 物理学専攻、2神戸大院・理、3神戸大・分子フォトセ

希土類元素の Ce を含む化合物は、局在する 4f 電子が伝導電子との相互作用により遍歴性を獲得することで様々な物性を示す。本研究においては、Ce 化合物が示す新奇物性の探索を目的として、直方晶の新物 質 CelrIn₂[1]に注目し、多結晶試料の作製、及び磁化率、電気抵抗率、比熱の測定を行い基礎物性を調べた。 逆磁化率の温度依存性から化合物中の Ce イオンは3価であることがわかった。図1に磁化率の温度依存性 を示す。 $T_N = 2.8 \text{ K}$ において磁化率がカスプを示すことから、この温度で反強磁性転移を示す。図2に電気

抵抗率の温度依存性を示す。11 K で極小を示し、それよ り低温側で $-\ln T$ の温度依存性を示すことから(内挿図の 黒線) この化合物は近藤格子系の化合物であることがわ かる。さらに T_N 以下で反強磁性転移により電気抵抗率が 急減する。比熱の温度依存性から求めた電子比熱係数が 117 mJ/K²Ce-mol と通常金属の100倍程度の値であること からこの化合物は重い電子系化合物であると言える。 [1] V. I. Zaremba *et al.*, Z. Anorg. Allg. Chem. **631** (6-7),

1065-1070 (2005).

Do1 CR-39(TechnoTrak)の陽子及び重陽子に対する応答特性

2

望月 政一郎¹,井上 千裕¹,尾崎 玲於奈¹,豊永 啓太¹,前川 馨¹,山内 知也², 福田 祐仁³,金崎 真聡²

海事科学研究科 海事科学専攻 博士前期課程¹、神戸大院·海²、量研関西研³

中性子発生を目的としたレーザー駆動重陽子線加速実験は陽子線も同時に加速される。本研究では、

X線や電子線が混在する場でもイオンのみを計測可能な固体飛跡検 出器 CR-39 によるレーザー加速陽子線及び重陽子線の弁別計測を目 的として、タンデム静電加速器による校正実験を行った。TechnoTrak に陽子線(0.3~3 MeV)及び重陽子線(0.8~3 MeV)を照射し、多段階エッ チング法を適用して、陽子線と重陽子線のエッチピットの成長挙動 を追跡した。CR-39 に入射した際の阻止能が同じ陽子と重陽子のエ ッチピットの成長曲線を図1に示す。入射時のエッチピット半径が 同じでも成長挙動を追うことで、陽子と重陽子のエッチピット半径が 同じでも成長挙動を追うことで、陽子と重陽子のエッチピット識別 が可能であることがわかった。また、レーザー加速イオン計測への 適用を目的とした、成長曲線作成の自動化プログラムを開発し、多 段階エッチング法による解析の効率化と高精度を実現した。

子と重陽子の成長曲線

二次電子放出を利用した高速イオンからの

エネルギー回収におけるカスプ磁場の導入Ⅲ

岡野滉也¹、清水龍大¹、久保田七音¹、管野浩史¹、中本聡¹、古川武留¹、竹野裕正¹、 谷池晃²、金崎真聡²

1工学研究科 電気電子工学専攻、2海事科学研究科

D-3He 核融合反応により生成されるエネルギーの大部分は荷電粒子の運動エネルギーであり、直接エネルギー変換が可能である。反応生成物の高速陽子はエネルギーが巨大で、特別なエネルギー回収法が必要である。その一つに、金属面への高速陽子の照射で発生する二次電子から回収するものがある。金属を箔として高速陽子を透過させ、箔を多数並べることで回収量向上を図るものは SEDEC (Secondary

Electron Direct Energy Converter)と呼ばれる。著者等は加速器 を利用して SEDEC の開発を模擬実験で進めている。

放出された二次電子を側面の捕集電極に導くためにビー ムに垂直な磁場を印加したが、電子がラーマー運動で金属箔 に戻り、放出量が低下した。これを防ぐために、金属箔と捕 集電極面のいずれに対しても磁力線が垂直となるよう、カス

図 複数電極の SEDEC 構成図

プ磁場に変更した。昨年度の電極1枚での実験に続いて、磁石と電極の数を増やした(図参照)実験を 行った。本報では、この実験の二次電子の放出量および回収量の測定結果を発表する。

D03

ピンホールコリメータによる2箇所の高エネルギーガン

マ線計測

藤原理帆1、谷池晃2、成藤智哉1、上月智史1

¹海事科学研究科 博士前期課程 海事科学専攻、²神戸大院・海

核融合炉の研究を進める上で、プラズマから損失したアルファ粒子を測定することが必要とされている。そのため、炉壁材料のベリリウムと損失アルファ粒子との核反応により生成する 4.44 MeV 高エネルギーガンマ線を炉外から測定することで損失アルファ粒子を計測する、高エネルギーアルファ粒子誘起ガンマ線計測手法が提案されている。本研究ではピンホールコリメータで2箇所のガンマ線計測を行

い、特性評価を行った。本学静電タンデム加速器を用いて 2.7 MeV のプロトンを PTFE ターゲットに入射し、約6 MeV のガン マ線を生成した。ピンホールコリメータは \$1,10,12,14 の鉛ブロッ クを計 13 枚重ねたものを用いた。ガンマ線ソースから 2092.5 mm,3000 mm の位置にピンホールコリメータと HPGe 検出器を設 置し、HPGe 検出器の設置位置を変えることによるガンマ線検出 量の変化を測定した。結果より、半値幅がそれぞれ 34 mm と 44 mm であることからピンホールコリメータでは2箇所のガンマ線 源を分離して測定できると考えられる。

図1 実験結果

D04

ガンマ線の2箇所同時生成および

1次元イメージング実験

成藤智哉¹,藤原理帆¹,上月智史¹,谷池晃²

1海事科学研究科 博士前期課程 海事科学専攻,2神戸大院・海

核融合炉や燃焼プラズマ実験の研究を進める上で、プラズマから損失し炉壁へ到達するアルファ粒子を測定することが重要となる。そこで、炉壁材料のベリリウムと損失アルファ粒子との核反応により生成する 4.44 MeV 高エネルギーガンマ線の発生位置と数量を炉外から測定することで損失アルファ 粒子を計測する、損失アルファ粒子誘起ガンマ線計測手法が提案されている。

本研究では、上記の手法についてガンマ線イメージングに関する実験を行った.ガンマ線の生成には、 本学静電タンデム加速器を利用した.金属ターゲット2つにプロトンを入射し、入射クーロン数を揃え

ることで、2箇所から同時にガンマ線を生成した. 鉛コリ メータと高純度ゲルマニウム検出器(HPGe)を設置し、鉛 コリメータと HPGe の測定位置を変えることで、ガンマ 線イメージングを模擬した実験を行った. Mg ターゲット では、ガンマ線ソースから約 1.5 m の位置で 2 箇所から 生成したガンマ線の像が得られた. 発表では、これらの 結果と考察について説明する.

D05

2箇所で生成した高エネルギーガンマ線の

1次元イメージング実験

上月智史¹, 成藤智哉¹, 藤原理帆¹, 谷池晃²

¹海事科学研究科 博士前期課程 海事科学専攻,²神戸大院・海

核融合炉や燃焼プラズマ実験の研究を進める上で、プラズマから損失し炉壁へ到達するアルファ粒子 を測定することが重要となる.そこで、炉壁材料のベリリウムと損失アルファ粒子との核反応により生 成する 4.44 MeV 高エネルギーガンマ線の発生位置と数量を炉外から測定することで損失アルファ粒子 を計測する、高エネルギーアルファ粒子誘起ガンマ線計測手法が提案されている.本研究ではタンデム 加速器を用いて 2 箇所からガンマ線を発生させ、そのイメージング実験を行い、コリメータ方式の特性 評価を行った.

本学タンデム加速器を用いて 2.7 MeV のプロトンを PTFE ターゲットに入射し,約6 MeV のガンマ線を生成した.2つのターゲットに対して順に測定を行い,それぞれのガンマ線収量を規格化し足し合わせることで,ガンマ線が離れた場所から同時に発生した場合と同様の結果が得られるようにした.ガンマ線発生源から 3000 mm の位置に鉛コリメータと HPGe検出器を設置し,鉛コリメータと検出器の位置を変えることで,ガンマ線イメージングを模擬した実験を行った.

52

若手フロンティアでは、研究会の運営改善及び各部門の利便性向上の為

皆様の要望、ご意見を募集しています。

下記 URL 又は QR コードからアンケートにご協力ください。

無記名ですので遠慮なくご記入ください。

http://www.csrea.kobe-u.ac.jp/frontier/fr_q/fr_q.html

