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発表者・来場者のみなさまへ 

・入館記録にご協力ください
こちらの QR コードより WEB にて入館記録をしてください。 
お手数をおかけしますがご協力をお願いいたします。 

―――――――――――――――――――――――――― 

・見学参加について
以下の名札を付けている参加者は「志」入試による入学予定の高校生になります。 

見学参加となっておりますのでご承知おきくださいますようお願いいたします。 

・写真撮影について
本研究会では、主催者による写真撮影が行われます。撮影された写真は、今後の広報活動（ウェ

ブサイト、パンフレット等）のために使用する場合がございますので、あらかじめご了承ください。 
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ポスター配置図 （百年記念館 ２F ホワイエ・六甲ホール）

・会議室 B（３F）は発表者控室ですので随時ご利⽤下さい。
※施錠しませんので貴重品は置かず、各⾃で管理してください。

・名札は表彰式の後で回収します。持ち帰らないでください。
・アンケートは Web（若⼿フロンティアのホームページ）から⼊⼒できます。皆さまのご協⼒をお願いします。

・当⽇の緊急連絡は 078-803-5398（研究推進課 研究推進グループ）までお願いします。
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S-palmitoylation negatively regulates TYR and TYRP1 stability
and is suppressed by UV stimulation
Feng Wanying1, Naoko Adachi1, Takehiko Ueyama1

1Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe, Japan

S-palmitoylation is a reversible post-translational lipid modification that regulates protein function, but its role in
melanogenesis remains poorly characterized. Here, we examined the palmitoylation status of the major
melanogenic enzymes tyrosinase (TYR), tyrosinase-related protein 1 (TYRP1), and tyrosinase-related protein 2
(TYRP2) and evaluated the functional consequences for melanin production. Using APEG-based palmitoylation
assays and metabolic labeling combined with click chemistry, it found that TYR and TYRP1, but not TYRP2, are
palmitoylated in melanocytes. Treatment with the pharmacological palmitoylation inhibitor 2-bromopalmitate
(2-BP) reduced levels of palmitoylated TYR and TYRP1 while increasing their total protein expression, indicating
palmitoylation promotes their degradation. A time-course experiment further revealed UV combined with
a-melanocyte-stimulating hormone (a-MSH), a physiological activator of melanogenesis, decreases the
palmitoylation ratio of TYR while increasing TYR protein abundance, suggesting that reduced palmitoylation is
part of the physiological response that enhances melanogenesis. To establish functional relevance, 2-BP partially
restored pigmentation in an oculocutaneous albinism type 3 (OCA3) melanocyte model lacking TYRP1, showing
that decreasing palmitoylation can compensate for TYRP1 deficiency. In summary, it shows that palmitoylation
suppresses pigmentation and that UV/a-MSH relieve this suppression, identifying palmitoylation as a regulator of
melanogenesis and a potential therapeutic target for OCA3 and other hypopigmentation disorders.
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Fig.1 Cellulose solubility – anions relations 
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carboxylate ionic liquids. 
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Figure 1. (a) SEM image of a spherical silicon particle. (b) 
Normalized thermal radiation spectrum of a spherical silicon 
particle with a diameter of 466 nm.
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Fig. 1 Extinction (1-T, transmittance, upper panel) 

and CD spectra (lower) of silicon nanoparticles 

(138±10 nm in diameter) on a silica substrate 

covered with L-Cys film (red curve). CD spectrum 

of silicon nanoparticles alone (black curve) is also 

shown in the lower panel.
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Fig. 1 Schematic illustration of the adhesion system
in the present study.

Fig. 2 Evaluation of adhesion strength.
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Fig. 1. Photoreaction schemes of (a) 1a–1c and (b) 1d. The 
reaction of 1c takes place in solution, whereas the others 
proceed in the neat state.
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Fig. 1. Structural formulas of (a) the 
cation and (b) anions used in this study.
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Fig.1 Chemical structure of cellulose acetate 
with randomly substituted H or acetyl 
groups (indicated as R in the figure)1) . 
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Fig.2 Frequency-field diagram at 
265 K
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Mechanistic insights on the terahertz absorption origin of edge-

oxidized graphene oxide/polyethylene composites 
Al Jerome A. Magsino 

Graduate School of Science, Department of Chemistry 

The terahertz (THz) absorption of graphene and related compounds is often correlated to free-carrier 
transport from the extended conjugation of π-networks in their structure, which is temperature-dependent [1]. 
Interestingly, edge-oxidized graphene oxide in polyethylene matrix (GO/PE) showed a featureless, temperature-
independent absorption spectrum from 83 K to 293 K in the 0.2 to 2.0 THz region, which served as the motivation 
to probe deeper into the origin of its absorption mechanism. Decarboxylated GO in PE exhibited temperature-
independent absorption with higher absorption intensity than untreated GO, ruling out polar vibrational modes and 
transport-based mechanisms. The THz absorption was also found to be insensitive to pellet density, suggesting 
that interflake GO interactions are not major contributors to the absorption. A non-linear scaling of absorption 
with GO content was also observed, indicating that the absorption is not dominated by graphitic vibrational 
modes. Complex conductivity data of GO/PE fitted well with the complex power law, which is a signature of a 
universal dielectric response. All results lean towards the interpretation that the THz absorption is most likely 
governed by non-resonant collective polarization of π-electrons trapped in a highly disordered graphene structure. 

[1] Kumar, P. Šilhavík, M., Parida, M.R., Nemec, H., Červenka, J., and Kužel, P. Nanoscale Adv., 2023, 5, 2933
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Fig. 1 Structure of polyethylenimine
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